Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS One ; 16(8): e0255085, 2021.
Article in English | MEDLINE | ID: mdl-34379632

ABSTRACT

Aging is universal, yet characterizing the molecular changes that occur in aging which lead to an increased risk for neurological disease remains a challenging problem. Aging affects the prefrontal cortex (PFC), which governs executive function, learning, and memory. Previous sequencing studies have demonstrated that aging alters gene expression in the PFC, however the extent to which these changes are conserved across species and are meaningful in neurodegeneration is unknown. Identifying conserved, age-related genetic and morphological changes in the brain allows application of the wealth of tools available to study underlying mechanisms in model organisms such as Drosophila melanogaster. RNA sequencing data from human PFC and fly heads were analyzed to determine conserved transcriptome signatures of age. Our analysis revealed that expression of 50 conserved genes can accurately determine age in Drosophila (R2 = 0.85) and humans (R2 = 0.46). These transcriptome signatures were also able to classify Drosophila into three age groups with a mean accuracy of 88% and classify human samples with a mean accuracy of 69%. Overall, this work identifies 50 highly conserved aging-associated genetic changes in the brain that can be further studied in model organisms and demonstrates a novel approach to uncovering genetic changes conserved across species from multi-study public databases.


Subject(s)
Aging/genetics , Brain/metabolism , Conserved Sequence/genetics , Drosophila melanogaster/genetics , Machine Learning , National Institutes of Health (U.S.) , Transcriptome/genetics , Adult , Aged , Algorithms , Animals , Databases, Genetic , Gene Expression Regulation , Genome, Insect , Humans , Middle Aged , Signal Transduction/genetics , United States
2.
Front Nutr ; 8: 652192, 2021.
Article in English | MEDLINE | ID: mdl-34041258

ABSTRACT

Eggs are protein-rich, nutrient-dense, and contain bioactive ingredients that have been shown to modify gene expression and impact health. To understand the effects of egg consumption on tissue-specific mRNA and microRNA expression, we examined the role of whole egg consumption (20% protein, w/w) on differentially expressed genes (DEGs) between rat (n = 12) transcriptomes in the prefrontal cortex (PFC), liver, kidney, and visceral adipose tissue (VAT). Principal component analysis with hierarchical clustering was used to examine transcriptome profiles between dietary treatment groups. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis as well as genetic network and disease enrichment analysis to examine which metabolic pathways were the most predominantly altered in each tissue. Overall, our data demonstrates that whole egg consumption for 2 weeks modified the expression of 52 genes in the PFC, 22 genes in VAT, and two genes in the liver (adj p < 0.05). Additionally, 16 miRNAs were found to be differentially regulated in the PFC, VAT, and liver, but none survived multiple testing correction. The main pathways influenced by WE consumption were glutathione metabolism in VAT and cholesterol biosynthesis in the PFC. These data highlight key pathways that may be involved in diseases and are impacted by acute consumption of a diet containing whole eggs.

3.
PLoS One ; 15(11): e0240885, 2020.
Article in English | MEDLINE | ID: mdl-33141822

ABSTRACT

Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3' mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Eggs , Glutathione/metabolism , Nutrigenomics , Animals , Diabetes Mellitus, Type 2/diet therapy , Eggs/adverse effects , Gene Expression Profiling , Male , Metabolic Networks and Pathways/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Rats, Zucker , Tissue Distribution , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL