Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 104(6): 1060-1072, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31104773

ABSTRACT

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the µ-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the µ-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2µ conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.


Subject(s)
Adaptor Protein Complex 2/genetics , Adaptor Protein Complex mu Subunits/genetics , Brain Diseases/etiology , Clathrin/metabolism , Endocytosis , Epilepsy/etiology , Mutation, Missense , Neurodevelopmental Disorders/etiology , Adolescent , Animals , Brain Diseases/pathology , Child , Child, Preschool , Clathrin/genetics , Epilepsy/pathology , Female , Humans , Infant , Mice , Mice, Knockout , Neurodevelopmental Disorders/pathology , Exome Sequencing
2.
Ann Neurol ; 90(3): 464-476, 2021 09.
Article in English | MEDLINE | ID: mdl-34288049

ABSTRACT

OBJECTIVE: Psychoses affecting people with epilepsy increase disease burden and diminish quality of life. We characterized postictal psychosis, which comprises about one quarter of epilepsy-related psychoses, and has unknown causation. METHODS: We conducted a case-control cohort study including patients diagnosed with postictal psychosis, confirmed by psychiatric assessment, with available data regarding epilepsy, treatment, psychiatric history, psychosis profile, and outcomes. After screening 3,288 epilepsy patients, we identified 83 with psychosis; 49 had postictal psychosis. Controls were 98 adults, matched by age and epilepsy type, with no history of psychosis. Logistic regression was used to investigate clinical factors associated with postictal psychosis; univariate associations with a p value < 0.20 were used to build a multivariate model. Polygenic risk scores for schizophrenia were calculated. RESULTS: Cases were more likely to have seizure clustering (odds ratio [OR] = 7.59, p < 0.001), seizures with a recollected aura (OR = 2.49, p = 0.013), and a family history of psychiatric disease (OR = 5.17, p = 0.022). Cases showed predominance of right temporal epileptiform discharges (OR = 4.87, p = 0.007). There was no difference in epilepsy duration, neuroimaging findings, or antiseizure treatment between cases and controls. Polygenic risk scores for schizophrenia in an extended cohort of postictal psychosis cases (n = 58) were significantly higher than in 1,366 epilepsy controls (R2  = 3%, p = 6 × 10-3 ), but not significantly different from 945 independent patients with schizophrenia (R2  = 0.1%, p = 0.775). INTERPRETATION: Postictal psychosis occurs under particular circumstances in people with epilepsy with a heightened genetic predisposition to schizophrenia, illustrating how disease biology (seizures) and trait susceptibility (schizophrenia) may interact to produce particular outcomes (postictal psychosis) in a common disease. ANN NEUROL 2021;90:464-476.


Subject(s)
Epilepsy/genetics , Epilepsy/physiopathology , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Psychotic Disorders/physiopathology , Adult , Case-Control Studies , Cohort Studies , Electroencephalography/methods , Epilepsy/complications , Female , Humans , Male , Middle Aged , Psychotic Disorders/etiology , Retrospective Studies
3.
J Neurol Neurosurg Psychiatry ; 92(10): 1044-1052, 2021 10.
Article in English | MEDLINE | ID: mdl-33903184

ABSTRACT

OBJECTIVE: The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. METHODS: A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. RESULTS: We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). SIGNIFICANCE: Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.


Subject(s)
Epilepsy/genetics , Precision Medicine , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Molecular Diagnostic Techniques , Retrospective Studies , Young Adult
4.
Neuroimage ; 218: 116967, 2020 09.
Article in English | MEDLINE | ID: mdl-32445879

ABSTRACT

BACKGROUND: Bilateral cyclic high frequency deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) reduces the seizure count in a subset of patients with epilepsy. Detecting stimulation-induced alterations of pathological brain networks may help to unravel the underlying physiological mechanisms related to effective stimulation delivery and optimize target engagement. METHODS: We acquired 64-channel electroencephalography during ten ANT-DBS cycles (145 â€‹Hz, 90 â€‹µs, 3-5 â€‹V) of 1-min ON followed by 5-min OFF stimulation to detect changes in cortical activity related to seizure reduction. The study included 14 subjects (three responders, four non-responders, and seven healthy controls). Mixed-model ANOVA tests were used to compare differences in cortical activity between subgroups both ON and OFF stimulation, while investigating frequency-specific effects for the seizure onset zones. RESULTS: ANT-DBS had a widespread desynchronization effect on cortical theta and alpha band activity in responders, but not in non-responders. Time domain analysis showed that the stimulation induced reduction in theta-band activity was temporally linked to the stimulation period. Moreover, stimulation induced theta-band desynchronization in the temporal lobe channels correlated significantly with the therapeutic response. Responders to ANT-DBS and healthy-controls had an overall lower level of theta-band activity compared to non-responders. CONCLUSION: This study demonstrated that temporal lobe channel theta-band desynchronization may be a predictive physiological hallmark of therapeutic response to ANT-DBS and may be used to improve the functional precision of this intervention by verifying implantation sites, calibrating stimulation contacts, and possibly identifying treatment responders prior to implantation.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation/methods , Electroencephalography Phase Synchronization , Epilepsy/therapy , Temporal Lobe/physiopathology , Theta Rhythm , Adult , Calibration , Electrodes, Implanted , Electroencephalography , Female , Humans , Male , Middle Aged , Seizures/prevention & control , Treatment Outcome
5.
Epilepsia ; 61(5): 995-1007, 2020 05.
Article in English | MEDLINE | ID: mdl-32469098

ABSTRACT

OBJECTIVE: We aimed to describe the extent of neurodevelopmental impairments and identify the genetic etiologies in a large cohort of patients with epilepsy with myoclonic atonic seizures (MAE). METHODS: We deeply phenotyped MAE patients for epilepsy features, intellectual disability, autism spectrum disorder, and attention-deficit/hyperactivity disorder using standardized neuropsychological instruments. We performed exome analysis (whole exome sequencing) filtered on epilepsy and neuropsychiatric gene sets to identify genetic etiologies. RESULTS: We analyzed 101 patients with MAE (70% male). The median age of seizure onset was 34 months (range = 6-72 months). The main seizure types were myoclonic atonic or atonic in 100%, generalized tonic-clonic in 72%, myoclonic in 69%, absence in 60%, and tonic seizures in 19% of patients. We observed intellectual disability in 62% of patients, with extremely low adaptive behavioral scores in 69%. In addition, 24% exhibited symptoms of autism and 37% exhibited attention-deficit/hyperactivity symptoms. We discovered pathogenic variants in 12 (14%) of 85 patients, including five previously published patients. These were pathogenic genetic variants in SYNGAP1 (n = 3), KIAA2022 (n = 2), and SLC6A1 (n = 2), as well as KCNA2, SCN2A, STX1B, KCNB1, and MECP2 (n = 1 each). We also identified three new candidate genes, ASH1L, CHD4, and SMARCA2 in one patient each. SIGNIFICANCE: MAE is associated with significant neurodevelopmental impairment. MAE is genetically heterogeneous, and we identified a pathogenic genetic etiology in 14% of this cohort by exome analysis. These findings suggest that MAE is a manifestation of several etiologies rather than a discrete syndromic entity.


Subject(s)
Epilepsies, Myoclonic/pathology , Epilepsy, Generalized/pathology , Seizures/pathology , Age of Onset , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/pathology , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/genetics , Epilepsy, Generalized/complications , Epilepsy, Generalized/genetics , Female , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Neuroimaging , Phenotype , Seizures/genetics , Exome Sequencing
6.
Epilepsia ; 61(4): 657-666, 2020 04.
Article in English | MEDLINE | ID: mdl-32141622

ABSTRACT

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.


Subject(s)
Anticonvulsants/therapeutic use , Drug Resistance/genetics , Epilepsy/drug therapy , Epilepsy/genetics , Pharmacogenomic Variants/genetics , Case-Control Studies , Female , Genotype , Humans , Lamotrigine/therapeutic use , Levetiracetam/therapeutic use , Male , Valproic Acid/therapeutic use
7.
Brain ; 142(2): 376-390, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30615093

ABSTRACT

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Subject(s)
Epilepsy/genetics , Intellectual Disability/genetics , Mutation, Missense/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons/physiology , Animals , Cells, Cultured , Humans , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Rats
8.
Genet Med ; 21(11): 2496-2503, 2019 11.
Article in English | MEDLINE | ID: mdl-31056551

ABSTRACT

PURPOSE: We aimed to gain insight into frequencies of genetic variants in genes implicated in neurodevelopmental disorder with epilepsy (NDD+E) by investigating large cohorts of patients in a diagnostic setting. METHODS: We analyzed variants in NDD+E using epilepsy gene panel sequencing performed between 2013 and 2017 by two large diagnostic companies. We compared variant frequencies in 6994 panels with another 8588 recently published panels as well as exome-wide de novo variants in 1942 individuals with NDD+E and 10,937 controls. RESULTS: Genes with highest frequencies of ultrarare variants in NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and STXBP1, concordant with the two other epilepsy cohorts we investigated. In only 46% of the analyzed 262 dominant and X-linked panel genes ultrarare variants in patients were reported. Among genes with contradictory evidence of association with epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2 showed equal frequencies in cases and controls. CONCLUSION: We show that improvement of panel design increased diagnostic yield over time, but panels still display genes with low or no diagnostic yield. With our data, we hope to improve current diagnostic NDD+E panel design and provide a resource of ultrarare variants in individuals with NDD+E to the community.


Subject(s)
Epilepsy/genetics , Genetic Testing/methods , Neurodevelopmental Disorders/genetics , Case-Control Studies , Epilepsy/diagnosis , Female , Gene Frequency/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genetic Testing/standards , Genetic Variation/genetics , Genotype , Humans , Male , Neurodevelopmental Disorders/diagnosis , Phenotype
9.
Epilepsia ; 60(5): e31-e36, 2019 05.
Article in English | MEDLINE | ID: mdl-30719712

ABSTRACT

Juvenile myoclonic epilepsy (JME) is a common syndrome of genetic generalized epilepsies (GGEs). Linkage and association studies suggest that the gene encoding the bromodomain-containing protein 2 (BRD2) may increase risk of JME. The present methylation and association study followed up a recent report highlighting that the BRD2 promoter CpG island (CpG76) is differentially hypermethylated in lymphoblastoid cells from Caucasian patients with JME compared to patients with other GGE subtypes and unaffected relatives. In contrast, we found a uniform low average percentage of methylation (<4.5%) for 13 CpG76-CpGs in whole blood cells from 782 unrelated European Caucasians, including 116 JME patients, 196 patients with genetic absence epilepsies, and 470 control subjects. We also failed to confirm an allelic association of the BRD2 promoter single nucleotide polymorphism (SNP) rs3918149 with JME (Armitage trend test, P = 0.98), and we did not detect a substantial impact of SNP rs3918149 on CpG76 methylation in either 116 JME patients (methylation quantitative trait loci [meQTL], P = 0.29) or 470 German control subjects (meQTL, P = 0.55). Our results do not support the previous observation that a high DNA methylation level of the BRD2 promoter CpG76 island is a prevalent epigenetic motif associated with JME in Caucasians.


Subject(s)
CpG Islands/genetics , DNA Methylation , Myoclonic Epilepsy, Juvenile/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Epilepsy, Absence/epidemiology , Epilepsy, Absence/genetics , Europe , Female , Humans , Leukocytes/chemistry , Male , Myoclonic Epilepsy, Juvenile/blood , Myoclonic Epilepsy, Juvenile/epidemiology , Polymorphism, Single Nucleotide
10.
Epilepsy Behav ; 91: 90-93, 2019 02.
Article in English | MEDLINE | ID: mdl-30076047

ABSTRACT

The glucose transporter type 1 (Glut1) is the most important energy carrier of the brain across the blood-brain barrier. In the early nineties, the first genetic defect of Glut1 was described and known as the Glut1 deficiency syndrome (Glut1-DS). It is characterized by early infantile seizures, developmental delay, microcephaly, and ataxia. Recently, milder variants have also been described. The clinical picture of Glut1 defects and the understanding of the pathophysiology of this disease have significantly grown. A special form of transient movement disorders, the paroxysmal exertion-induced dyskinesia (PED), absence epilepsies particularly with an early onset absence epilepsy (EOAE) and childhood absence epilepsy (CAE), myoclonic astatic epilepsy (MAE), episodic choreoathetosis and spasticity (CSE), and focal epilepsy can be based on a Glut1 defect. Despite the rarity of these diseases, the Glut1 syndromes are of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms especially if it is started as early as possible. The present article summarizes the clinical features of Glut1 syndromes and discusses the underlying genetic mutations, including the available data on functional tests as well as the genotype-phenotype correlations. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".


Subject(s)
Epilepsy/genetics , Glucose Transporter Type 1/genetics , Movement Disorders/genetics , Mutation/genetics , Carbohydrate Metabolism, Inborn Errors/diagnosis , Carbohydrate Metabolism, Inborn Errors/diet therapy , Carbohydrate Metabolism, Inborn Errors/genetics , Diet, Ketogenic/methods , Dystonic Disorders/diagnosis , Dystonic Disorders/diet therapy , Dystonic Disorders/genetics , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/diet therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Partial/diagnosis , Epilepsies, Partial/diet therapy , Epilepsies, Partial/genetics , Epilepsy/diagnosis , Epilepsy/diet therapy , Epilepsy, Absence/diagnosis , Epilepsy, Absence/diet therapy , Epilepsy, Absence/genetics , Humans , Monosaccharide Transport Proteins/deficiency , Monosaccharide Transport Proteins/genetics , Movement Disorders/diagnosis , Movement Disorders/diet therapy
11.
Epilepsia ; 59(2): 389-402, 2018 02.
Article in English | MEDLINE | ID: mdl-29315614

ABSTRACT

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Subject(s)
Epilepsies, Myoclonic/physiopathology , GABA Plasma Membrane Transport Proteins/genetics , Intellectual Disability/physiopathology , Language Development Disorders/physiopathology , Adolescent , Adult , Anticonvulsants/therapeutic use , Ataxia/complications , Ataxia/genetics , Ataxia/physiopathology , Child , Child, Preschool , Cohort Studies , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Partial/complications , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Epilepsy, Generalized/complications , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Female , Genetic Association Studies , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Language Development Disorders/complications , Language Development Disorders/genetics , Male , Mutation , Mutation, Missense , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Treatment Outcome , Valproic Acid/therapeutic use , Young Adult
12.
BMC Neurol ; 18(1): 114, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115021

ABSTRACT

BACKGROUND: Deficits in gait and balance are common among neurological inpatients. Currently, assessment of these patients is mainly subjective. New assessment options using wearables may provide complementary and more objective information. METHODS: In this prospective cross-sectional feasibility study performed over a four-month period, all patients referred to a normal neurology ward of a university hospital and aged between 40 and 89 years were asked to participate. Gait and balance deficits were assessed with wearables at the ankles and the lower back. Frailty, sarcopenia, Parkinsonism, depression, quality of life, fall history, fear of falling, physical activity, and cognition were evaluated with questionnaires and surveys. RESULTS: Eighty-two percent (n = 384) of all eligible patients participated. Of those, 39% (n = 151) had no gait and balance deficit, 21% (n = 79) had gait deficits, 11% (n = 44) had balance deficits and 29% (n = 110) had gait and balance deficits. Parkinson's disease, stroke, epilepsy, pain syndromes, and multiple sclerosis were the most common diseases. The assessment was well accepted. CONCLUSIONS: Our study suggests that the use of wearables for the assessment of gait and balance features in a clinical setting is feasible. Moreover, preliminary results confirm previous epidemiological data about gait and balance deficits among neurological inpatients. Evaluation of neurological inpatients with novel wearable technology opens new opportunities for the assessment of predictive, progression and treatment response markers.


Subject(s)
Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/physiopathology , Gait/physiology , Postural Balance/physiology , Wearable Electronic Devices , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Feasibility Studies , Female , Gait Disorders, Neurologic/epidemiology , Germany/epidemiology , Humans , Inpatients , Male , Middle Aged , Prospective Studies , Research Design
13.
Epilepsy Behav ; 82: 64-67, 2018 05.
Article in English | MEDLINE | ID: mdl-29587187

ABSTRACT

OBJECTIVE: The objective of the present study was to collect systematic data on the care of adult patients with tuberous sclerosis complex (TSC) in German epilepsy centers, to describe the characteristics of patients in this age group, and to clarify whether and how the recommended interdisciplinary care is implemented. METHODS: This retrospective survey involved 12 major epilepsy centers in Germany. Aggregated data were collected based on an electronic questionnaire that addressed the sociodemographic data, characteristics of the epilepsy syndromes, and general healthcare setting of adult patients with TSC. RESULTS: The survey included 262 patients (mean age: 36.2±9.0years) with TSC, most of whom were reported to live in either a home for persons with a disability (37.0%), a residential care home (6.9%), or with their parents (31.1%). A further 13.0% were self-sustaining, and 8.8% were living with a partner. Most patients presented with focal (49.6%) or multifocal (33.2%) epilepsy, with complex partial, dialeptic, and automotor seizures in 66% of patients and generalized tonic-clonic seizures in 63%. Drug-refractory epilepsy was seen in 78.2% of patients, and 17.6% were seizure-free at the time of the survey. Of the 262 patients, presurgical diagnostics were performed in 27% and epilepsy surgery in 9%, which rendered 50% of these patients seizure-free. Renal screening had been performed in 56.1% within the last three years and was scheduled to be performed in 58.0%. Cases of renal angiomyolipoma were present in 46.9% of the patients. Dermatologic and pulmonary screenings were known to be planned for only few patients. CONCLUSION: Despite TSC being a multisystem disorder causing considerable impairment, every fifth adult patient is self-sustaining or living with a partner. In clinical practice, uncontrolled epilepsy and renal angiomyolipoma are of major importance in adult patients with TSC. Most patients suffer from focal or multifocal epilepsy, but epilepsy surgery is performed in less than 10% of these patients. Interdisciplinary TSC centers may help to optimize the management of patients with TSC regardless of age and ensure early and adequate treatment that also considers the advances in new therapeutic options.


Subject(s)
Delivery of Health Care/methods , Epilepsy/epidemiology , Epilepsy/therapy , Tuberous Sclerosis/epidemiology , Tuberous Sclerosis/therapy , Adolescent , Adult , Child , Child, Preschool , Delivery of Health Care/trends , Epilepsy/diagnosis , Female , Germany/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Surveys and Questionnaires , Tuberous Sclerosis/diagnosis , Young Adult
14.
J Med Genet ; 54(9): 598-606, 2017 09.
Article in English | MEDLINE | ID: mdl-28756411

ABSTRACT

BACKGROUND: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement 'hotspot' loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained. OBJECTIVE: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype. METHODS: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls. RESULTS: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10-6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10-12, OR 7.45, 95% CI 4.20-13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10-3,OR 2.85, 95% CI 1.62-4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls. CONCLUSIONS: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.


Subject(s)
Chromosome Deletion , Epilepsies, Partial/genetics , Epilepsy, Generalized/genetics , Epilepsy, Rolandic/genetics , Case-Control Studies , Cohort Studies , DNA Copy Number Variations , Gene Expression , Genetic Association Studies , Humans
15.
PLoS Genet ; 11(5): e1005226, 2015 May.
Article in English | MEDLINE | ID: mdl-25950944

ABSTRACT

Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.


Subject(s)
Epilepsy, Generalized/genetics , Neurodevelopmental Disorders/genetics , Sequence Deletion , Adolescent , Adult , Case-Control Studies , Child , Cohort Studies , DNA Copy Number Variations , Female , Gene Rearrangement , Genetic Association Studies , Genome, Human , Humans , Male , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs , Young Adult
16.
Ann Neurol ; 79(3): 428-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26677014

ABSTRACT

OBJECTIVE: Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS: We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS: In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION: Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.


Subject(s)
Chorea/genetics , Epilepsy, Benign Neonatal/genetics , Genetic Predisposition to Disease/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Polymorphism, Single Nucleotide/genetics , Child , Child, Preschool , Chorea/diagnosis , Epilepsy, Benign Neonatal/diagnosis , Female , Humans , Male , Mutation/genetics
17.
Epilepsia ; 56(9): e129-33, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26174448

ABSTRACT

Partial deletions of the RBFOX1 gene encoding the neuronal splicing regulator have been reported in a range of neurodevelopmental diseases including idiopathic/genetic generalized epilepsy (IGE/GGE), childhood focal epilepsy, and self-limited childhood benign epilepsy with centrotemporal spikes (BECTS, rolandic epilepsy), and autism. The protein regulates alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal excitability. Herein, we examined whether structural deletions affecting RBFOX1 exons confer susceptibility to common forms of juvenile and adult focal epilepsy syndromes. We screened 807 unrelated patients with sporadic focal epilepsy, and we identified seven hemizygous exonic RBFOX1 deletions in patients with sporadic focal epilepsy (0.9%) in comparison to one deletion found in 1,502 controls. The phenotypes of the patients carrying RBFOX1 deletions comprise magnetic resonance imaging (MRI)-negative epilepsy of unknown etiology with frontal and temporal origin (n = 5) and two patients with temporal lobe epilepsy with hippocampal sclerosis. The epilepsies were largely pharmacoresistant but not associated with intellectual disability. Our study extends the phenotypic spectrum of RBFOX1 deletions as a risk factor for focal epilepsy and suggests that exonic RBFOX1 deletions are involved in the broad spectrum of focal and generalized epilepsies.


Subject(s)
Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Genetic Predisposition to Disease/genetics , RNA-Binding Proteins/genetics , Sequence Deletion/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Phenotype , RNA Splicing Factors
18.
Neuropediatrics ; 46(4): 287-91, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26110312

ABSTRACT

BACKGROUND: SYNGAP1, which encodes a RAS-GTPase-activating protein, is located on the short arm of chromosome 6. Heterozygous SYNGAP1 gene mutations have been associated with autism spectrum disorders, delay of psychomotor development, acquired microcephaly, and several forms of idiopathic generalized epilepsy. Here, we report a patient with a new SYNGAP1 stop mutation, and compare the phenotype with published cases with SYNGAP1 mutations and epilepsy. PATIENT: This 15-year-old nondysmorphic girl with intellectual disability developed drop attacks at the age of 2 years, later clonic and clonic-tonic as well as myoclonic seizures predominantly during sleep. The epilepsy was well-controlled by valproic acid (VPA) and later on with levetiracetam. Electroencephalogram (EEG) showed a complete EEG-normalization with eye opening as well as photosensitivity. Magnetic resonance imaging was normal. Genetic analysis revealed a de novo heterozygous stop mutation (c.348C>A, p.Y116*) in exon 4 of the SYNGAP1 gene. DISCUSSION: The main clinical features of our patient (i.e., intellectual disability and idiopathic epilepsy) are compatible with previous reports on patients with SYNGAP1 mutations. The unusual feature of complete EEG normalization with eye opening has not been reported yet for this genetic abnormality. Furthermore, our case provides further support for efficacy of VPA in patients with SYNGAP1 mutation-related epilepsy.


Subject(s)
Epilepsies, Partial/diagnosis , Epilepsies, Partial/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , ras GTPase-Activating Proteins/genetics , Adolescent , Brain/physiopathology , Epilepsies, Partial/complications , Epilepsy, Generalized/complications , Female , Humans , Mutation
19.
Hum Mol Genet ; 21(24): 5359-72, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22949513

ABSTRACT

Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.


Subject(s)
Epilepsy, Generalized/genetics , Genome-Wide Association Study , Alleles , Epilepsy, Absence/genetics , Genetic Predisposition to Disease/genetics , Homeodomain Proteins/genetics , Humans , Myoclonic Epilepsy, Juvenile/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Protein Serine-Threonine Kinases/genetics , Receptor, Muscarinic M3/genetics , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2
20.
Epilepsia ; 54(2): 265-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23350840

ABSTRACT

PURPOSE: Structural variations disrupting the gene encoding the neuron-specific splicing regulator RBFOX1 have been reported in three patients exhibiting epilepsy in comorbidity with other neuropsychiatric disorders. Consistently, the Rbfox1 knockout mouse model showed an increased susceptibility of seizures. The present candidate gene study tested whether exon-disrupting deletions of RBFOX1 increase the risk of idiopathic generalized epilepsies (IGEs), representing the largest group of genetically determined epilepsies. METHODS: Screening of microdeletions (size: >40 kb, coverage >20 markers) affecting the genomic sequence of the RBFOX1 gene was carried out by high-resolution single-nucleotide polymorphism (SNP) arrays in 1,408 European patients with idiopathic generalized epilepsy (IGE) and 2,256 population controls. Validation of RBFOX1 deletions and familial segregation analysis were performed by quantitative polymerase chain reaction (qPCR). KEY FINDINGS: We detected five exon-disrupting RBFOX1 deletions in the IGE patients, whereas none was observed in the controls (p = 0.008, Fisher's exact test). The size of the exonic deletions ranged from 68 to 896 kb and affected the untranslated 5'-terminal RBFOX1 exons. Segregation analysis in four families indicated that the deletions were inherited, display incomplete penetrance, and heterogeneous cosegregation patterns with IGE. SIGNIFICANCE: Rare deletions affecting the untranslated 5'-terminal RBFOX1 exons increase risk of common IGE syndromes. Variable expressivity, incomplete penetrance, and heterogeneous cosegregation patterns suggest that RBFOX1 deletions act as susceptibility factor in a genetically complex etiology, where heterogeneous combinations of genetic factors determine the disease phenotype.


Subject(s)
Epilepsy, Generalized/genetics , Exons/genetics , Gene Deletion , RNA-Binding Proteins/genetics , 5' Untranslated Regions , Age of Onset , Case-Control Studies , Child , Comorbidity , DNA/genetics , Epilepsy, Generalized/epidemiology , Female , Humans , Male , Pedigree , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , RNA Splicing Factors , White People
SELECTION OF CITATIONS
SEARCH DETAIL