Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.034
Filter
Add more filters

Publication year range
1.
Development ; 151(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38063853

ABSTRACT

High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.


Subject(s)
Adult Stem Cells , Diabetes Mellitus, Type 2 , Drosophila Proteins , Insulin Resistance , Animals , Female , Drosophila/metabolism , Drosophila Proteins/metabolism , Reactive Oxygen Species/metabolism , Dietary Sugars/metabolism , Adult Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Obesity
2.
Circ Res ; 134(2): 165-185, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38166463

ABSTRACT

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Efferocytosis , TNF Receptor-Associated Factor 6/metabolism , Atherosclerosis/metabolism , Inflammation/genetics , Mice, Knockout , Phenotype , Apolipoproteins E , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 119(36): e2205629119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037365

ABSTRACT

Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.


Subject(s)
Apoptosis , Immune Tolerance , Membrane Proteins , Precursor Cells, B-Lymphoid , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Forkhead Box Protein O1/metabolism , Humans , Lysosomes/metabolism , Membrane Proteins/genetics , PTEN Phosphohydrolase/metabolism , Precursor Cells, B-Lymphoid/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Article in English | MEDLINE | ID: mdl-38494093

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory condition affecting the nasal and paranasal sinus mucosa, often accompanied by olfactory dysfunction. Eosinophilic CRS with nasal polyps (ECRSwNP) is a subtype of CRS characterized by eosinophilic infiltration. Animal models for ECRSwNP with olfactory dysfunction are necessary for exploring potential therapeutic strategies. OBJECTIVE: The aim of this study was to establish a mouse model of ECRSwNP combined with olfactory dysfunction in a shorter time frame using intranasal ovalbumin and Aspergillus protease (AP) administration. The efficacy of the model was validated by evaluating sinonasal inflammation, cytokine levels, olfactory function, and neuroinflammation in the olfactory bulb. METHODS: Male BALB/c mice were intranasally administered ovalbumin and AP for 6 and 12 weeks to induce ECRSwNP. The resultant ECRSwNP mouse model underwent histologic assessment, cytokine analysis of nasal lavage fluid, olfactory behavioral tests, and gene expression profiling to identify neuroinflammatory markers within the olfactory bulb. RESULTS: The developed mouse model exhibited substantial eosinophil infiltration, increased levels of inflammatory cytokines in nasal lavage fluid, and confirmed olfactory dysfunction through behavioral assays. Furthermore, olfactory bulb inflammation and reduced mature olfactory sensory neurons were observed in the model. CONCLUSION: This study successfully established a validated mouse model of ECRSwNP with olfactory dysfunction within a remarkably short span of 6 weeks, providing a valuable tool for investigating the pathogenesis and potential therapies for this condition. The model offers an efficient approach for future research in CRS with nasal polyps and olfactory dysfunction.

5.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608251

ABSTRACT

Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt-N-C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt-N-C motifs favors the 4e- ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e- ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.

6.
J Hepatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759889

ABSTRACT

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.

7.
Apoptosis ; 29(5-6): 835-848, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573492

ABSTRACT

Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Ferroptosis , Oxaliplatin , PTEN Phosphohydrolase , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Oxaliplatin/pharmacology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Xenograft Model Antitumor Assays , Male
8.
Small ; 20(19): e2308266, 2024 May.
Article in English | MEDLINE | ID: mdl-38100155

ABSTRACT

Developing well-crystallized light-absorbing layers remains a formidable challenge in the progression of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high-temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure-guided hetero-nucleation regulation strategy for high-quality CZTSSe absorbers and well-performing solar cells. The alcoholysis of 2-methoxyethanol (MOE) and the generation of high gas-producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced-roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active-area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high-quality kesterite CZTSSe films and high-efficiency solar cells.

9.
Hepatology ; 77(1): 124-143, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35429173

ABSTRACT

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Subject(s)
Non-alcoholic Fatty Liver Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Mice , MAP Kinase Kinase Kinases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , Tripartite Motif Proteins/metabolism
10.
BMC Cancer ; 24(1): 671, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824581

ABSTRACT

BACKGROUND: The role of novel circular RNAs (circRNAs) in colorectal cancer (CRC) remains to be determined. This study aimed to identify a novel circRNA involved in CRC pathogenesis, assess its diagnostic value, and construct a regulatory network. METHODS: Differential expression analysis was conducted using circRNA datasets to screen for differentially expressed circRNAs. The expression of selected circRNAs was validated in external datasets and clinical samples. Diagnostic value of plasma circRNA levels in CRC was assessed. A competing endogenous RNA (ceRNA) network was constructed for the circRNA using TCGA dataset. RESULTS: Analysis of datasets revealed that hsa_circ_101303 was significantly overexpressed in CRC tissues compared to normal tissues. The upregulation of hsa_circ_101303 in CRC tissues was further confirmed through the GSE138589 dataset and clinical samples. High expression of hsa_circ_101303 was associated with advanced N stage, M stage, and tumor stage in CRC. Plasma levels of hsa_circ_101303 were markedly elevated in CRC patients and exhibited moderate diagnostic ability for CRC (AUC = 0.738). The host gene of hsa_circ_101303 was also found to be related to the TNM stage of CRC. Nine miRNAs were identified as target miRNAs for hsa_circ_101303, and 27 genes were identified as targets of these miRNAs. Subsequently, a ceRNA network for hsa_circ_101303 was constructed to illustrate the interactions between the nine miRNAs and 27 genes. CONCLUSIONS: The study identifies hsa_circ_101303 as a highly expressed circRNA in CRC, which is associated with the progression of the disease. Plasma levels of hsa_circ_101303 show promising diagnostic potential for CRC. The ceRNA network for hsa_circ_101303 provides valuable insights into the regulatory mechanisms underlying CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , RNA, Circular , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , RNA, Circular/genetics , RNA, Circular/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Male , Female , MicroRNAs/genetics , MicroRNAs/blood , Middle Aged , Gene Expression Profiling , Neoplasm Staging
11.
Pharmacol Res ; 200: 107060, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185210

ABSTRACT

OBJECTIVE: To assess the efficacy and safety of FDA-approved KRASG12C inhibitors in patients with KRASG12C-mutated solid tumors. METHODS: We searched PubMed, EMBASE, Cochrane Library, and major international conferences for clinical trials published in English up to March 6, 2023. Clinical trials investigating sotorasib or adagrasib and reporting the clinical outcomes of the objective response rate (ORR), disease control rate (DCR), or incidence rate of grade ≥ 3 adverse events (AEs) were eligible. The primary endpoint was the ORR. Secondary endpoints included the DCR, incidence rate of grade ≥ 3 AEs, and odds ratio (OR) of the ORR between patients with or without co-mutation. The Random-effects model was applied for the outcomes of interest. RESULTS: 18 studies with 1224 patients were included in this meta-analysis. The pooled ORR, DCR, and incidence rate of grade ≥ 3 AEs were 31 % (95 % CI, 25-37 %), 86 % (95 % CI, 82-89 %), and 29 % (95 % CI, 23-36 %), respectively. KRASG12C-mutated NSCLC patients with a co-mutation of KEAP1 exhibited a worse ORR than those with wild-type KEAP1 (OR: 0.35, 95 % CI: 0.16-0.77). CONCLUSIONS: This study provided a comprehensive understanding of the efficacy and safety of KRASG12C inhibitors in treating solid tumors and identified KEAP1 mutation as a potential predictive biomarker of inferior response in patients treated with KRASG12C inhibitors. These findings may assist in the design of future clinical trials for identifying populations that may benefit from KRASG12C inhibitor treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1 , Proto-Oncogene Proteins p21(ras) , NF-E2-Related Factor 2 , Mutation
12.
J Org Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935873

ABSTRACT

A nickel-catalyzed direct sulfonylation of alkenes with sulfonyl chlorides has been developed using 1,10-phenanthroline-5,6-dione as the ligand. Unactivated alkenes and styrenes including 1,1-, 1,2-disubstituted alkenes can be subjected to the protocol, and a wide range of vinyl sulfones was obtained in high to excellent yields with good functional group compatibility. Notably, the process did not allow the desulfonylation of sulfonyl chloride or chlorosulfonylation of alkenes. Radical-trapping experiment supported that a sulfonyl free-radical was likely produced and triggered subsequent transformation in the process.

13.
BMC Gastroenterol ; 24(1): 197, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877387

ABSTRACT

BACKGROUND: Innate/adaptive immunity is the key to anti-tumor therapy. However, its causal relationship to Gastrointestinal (GI) cancer remains unclear. METHODS: Immunity genes were extracted from the MSigDB database. The Genome-wide association studies (GWAS) summary data of GI cancer were integrated with expression quantitative trait loci (eQTL) and DNA methylation quantitative trait loci (mQTL) associated with genes. Summary-data-based Mendelian randomization (SMR) and co-localization analysis were used to reveal causal relationships between genes and GI cancer. Two-sample MR analysis was used for sensitivity analysis. Single cell analysis clarified the enrichment of genes. RESULTS: Three-step SMR analysis showed that a putative mechanism, cg17294865 CpG site regulating HLA-DRA expression was negatively associated with gastric cancer risk. HLA-DRA was significantly differentially expressed in monocyte/macrophage and myeloid cells in gastric cancer. CONCLUSION: This study provides evidence that upregulating the expression level of HLA-DRA can reduce the risk of gastric cancer.


Subject(s)
Adaptive Immunity , DNA Methylation , Gastrointestinal Neoplasms , Genome-Wide Association Study , Immunity, Innate , Mendelian Randomization Analysis , Quantitative Trait Loci , Humans , Immunity, Innate/genetics , Adaptive Immunity/genetics , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , HLA-DR alpha-Chains/genetics , CpG Islands/genetics , Multiomics
14.
Nanotechnology ; 35(36)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861984

ABSTRACT

Electric field control of spin-orbit torque (SOT) exhibits promising potential in advanced spintronic devices through interfacial modulation. In this work, we investigate the influence of electric field and interfacial oxidation on SOT efficiency in annealed Ta/CoFeB/HfOxheterostructures. By varying annealing temperatures, the damping-like SOT efficiency reaches its peak at the annealing temperature of 320 °C, with an 80% field-free magnetization switching ratio induced by SOT having been demonstrated. This enhancement is ascribed to the annealing-induced modulation of oxygen ion migration at the CoFeB/HfOxinterface. By applying voltages across the Ta/CoFeB/HfOxheterostructures, which drives the O2‒migration across the interface, a reversible, bipolar, and non-volatile modulation of SOT efficiency was observed. The collective influence of annealing temperature and electric field effects on SOT carried out in this work provides an effective approach into facilitating the optimization and control of SOT in spintronic devices.

15.
Environ Res ; 255: 119187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38777295

ABSTRACT

The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.


Subject(s)
Charcoal , Iron , Nitrogen , Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Charcoal/chemistry , Iron/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
16.
J Nanobiotechnology ; 22(1): 394, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965594

ABSTRACT

DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.


Subject(s)
DNA , Liver , Nanostructures , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Mice , Liver/metabolism , DNA/chemistry , Nanostructures/chemistry , Male , Tissue Distribution , Mice, Inbred C57BL , Apoptosis/drug effects , Oxidative Stress/drug effects
17.
Retina ; 44(6): 1092-1099, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38320305

ABSTRACT

PURPOSE: To observe the diagnostic value of multispectral fundus imaging (MSI) in hypertensive retinopathy (HR). METHODS: A total of 100 patients with HR were enrolled in this cross-sectional study, and all participants received fundus photography and MSI. Participants with severe HR received fundus fluorescein angiography (FFA). The diagnostic consistency between fundus photography and MSI in the diagnosis of HR was calculated. The sensitivity of MSI in the diagnosis of severe HR was calculated by comparison with FFA. Choroidal vascular index was calculated in patients with HR using MSI at 780 nm. RESULTS: MSI and fundus photography were highly concordant in the diagnosis of HR with a Kappa value = 0.883. MSI had a sensitivity of 96% in diagnosing retinal hemorrhage, a sensitivity of 89.47% in diagnosing retinal exudation, a sensitivity of 100% in diagnosing vascular compression indentation, and a sensitivity of 96.15% in diagnosing retinal arteriosclerosis. The choroidal vascular index of the patients in the HR group was significantly lower than that of the control group, whereas there was no significant difference between the affected and fellow eyes. CONCLUSION: As a noninvasive modality of observation, MSI may be a new tool for the diagnosis and assessment of HR.


Subject(s)
Fluorescein Angiography , Fundus Oculi , Hypertensive Retinopathy , Humans , Cross-Sectional Studies , Female , Male , Middle Aged , Fluorescein Angiography/methods , Hypertensive Retinopathy/diagnosis , Aged , Adult , Photography/methods , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology
18.
Biomed Chromatogr ; : e5922, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867488

ABSTRACT

This study aims to explore the pharmacological substance basis of Qi Ge Decoction (QG) in antihyperlipidemia through a combination of metabolomics and serum pharmacochemistry. We used ultra-performance liquid chromatography quadrupole-time-of-flight/MS (UPLC Q-TOF/MS) to analyze and identify the chemical constituents of QG in vitro and in blood chemical components. The metabolomics technology was used to analyze serum biomarkers of QG in preventing and treating hyperlipidemia. We constructed a mathematical model of the relationship between constituents absorbed into the blood and endogenous biomarkers and explored the potential therapeutic application of QG for the prevention and treatment of hyperlipidemia. Compared with the model group, the levels of total cholesterol and triglyceride in the QG group were significantly decreased (P < 0.01). A total of 12 chemical components absorbed into the blood were identified, and 48 biomarkers of the hyperlipidemia model were obtained from serum metabolomic analysis, of which 15 metabolites were backregulated after QG intervention. Puerarin, hesperetin, puerarin xyloside, calycosin, and monohydroxy-tetramethoxyflavone had a high correlation with the biomarkers regulated by QG. This study elucidated the material basis of QG in the intervention of hyperlipidemia, thereby facilitating future research aimed at further revealing the pharmacodynamic material basis of QG's antihyperlipidemic effects.

19.
Biomed Chromatogr ; 38(6): e5865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514246

ABSTRACT

The aim of this work was to explore the differences between various pharmaceutical processes in combined solutions of a single decoction (QGHBY) and a combined decoction (QGHJY) of Qi-Ge decoction from the perspective of chemical composition changes, so as to further guide the clinical application of drugs. A combined solution of a single decoction and a combined decoction of Astragali Radix, Puerariae Lobatae Radix and Citri Reticulatae Chachiensis Pericarpium was prepared with the same technological parameters. The chemical components of the two were detected and identified based on UPLC-Q-TOF/MS, and the different components were determined by principal component analysis. Eighty-eight compounds were identified in the pharmaceutical solution of Qi-Ge decoction. Principal component analysis revealed 11 different components of QGHBY and QGHJY with the conditions of Variable Importance in Projection (VIP) ≥ 1, fold change ≥ 2 and p < 0.05, among which hesperidin, hesperitin, isosinensetin, sinensetin and 5-demethylnobiletin were the components of Citri Reticulatae Chachiensis Pericarpium. The levels of these 11 different components in QGHJY were higher than those of QGHBY. The combined decoction is beneficial for the dissolution of flavonoids and other chemical components, and there is a significant difference in the content of chemical components between modern herbal concentrate granules and traditional decoctions.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Principal Component Analysis , Flavonoids/analysis , Flavonoids/chemistry
20.
J Med Internet Res ; 26: e48572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700923

ABSTRACT

BACKGROUND: Adverse drug reactions (ADRs), which are the phenotypic manifestations of clinical drug toxicity in humans, are a major concern in precision clinical medicine. A comprehensive evaluation of ADRs is helpful for unbiased supervision of marketed drugs and for discovering new drugs with high success rates. OBJECTIVE: In current practice, drug safety evaluation is often oversimplified to the occurrence or nonoccurrence of ADRs. Given the limitations of current qualitative methods, there is an urgent need for a quantitative evaluation model to improve pharmacovigilance and the accurate assessment of drug safety. METHODS: In this study, we developed a mathematical model, namely the Adverse Drug Reaction Classification System (ADReCS) severity-grading model, for the quantitative characterization of ADR severity, a crucial feature for evaluating the impact of ADRs on human health. The model was constructed by mining millions of real-world historical adverse drug event reports. A new parameter called Severity_score was introduced to measure the severity of ADRs, and upper and lower score boundaries were determined for 5 severity grades. RESULTS: The ADReCS severity-grading model exhibited excellent consistency (99.22%) with the expert-grading system, the Common Terminology Criteria for Adverse Events. Hence, we graded the severity of 6277 standard ADRs for 129,407 drug-ADR pairs. Moreover, we calculated the occurrence rates of 6272 distinct ADRs for 127,763 drug-ADR pairs in large patient populations by mining real-world medication prescriptions. With the quantitative features, we demonstrated example applications in systematically elucidating ADR mechanisms and thereby discovered a list of drugs with improper dosages. CONCLUSIONS: In summary, this study represents the first comprehensive determination of both ADR severity grades and ADR frequencies. This endeavor establishes a strong foundation for future artificial intelligence applications in discovering new drugs with high efficacy and low toxicity. It also heralds a paradigm shift in clinical toxicity research, moving from qualitative description to quantitative evaluation.


Subject(s)
Big Data , Data Mining , Drug-Related Side Effects and Adverse Reactions , Humans , Data Mining/methods , Pharmacovigilance , Models, Theoretical , Adverse Drug Reaction Reporting Systems/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL