ABSTRACT
AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.
Subject(s)
Dental Pulp , Platelet-Derived Growth Factor , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Connexin 43/metabolism , Phosphatidylinositol 3-Kinases , Receptor, Platelet-Derived Growth Factor alpha , Regeneration , Stem Cells/metabolismABSTRACT
Lipid droplets are dynamic multifunctional organelles composed of a neutral lipid core and a phospholipid monolayer membrane modified by a specific set of proteins. PAT family proteins are the most characteristic lipid droplet proteins, playing an important role in regulating lipid droplet structure, function, and metabolism. The biogenesis of lipid droplets involves neutral lipid synthesis and the nucleation, budding, and growth of the lipid droplets. Lipid droplets not only serve as the energy metabolism reserve of cells but also participate in intracellular signal transduction and the development of inflammation and tumor. Lipid droplets are closely connected to and interact with various organelles, regulating the division, the transportation, and the genetics of organelles. The complexity of lipid droplets biogenesis and the diversity of their functions may have provided a physiological basis for the pathogenesis and development of diseases, but further research is needed in order to better understand the relevant processes. Published findings have helped elucidate the association between lipid droplets and diseases, such as obesity, non-alcoholic fatty liver disease, neurodegenerative disease, cancer, and cardiovascular disease, but the relationship between lipid droplets and oral diseases has not been fully studied. Topics that warrant further research include the role and mechanisms of lipid droplets in the pathogenesis and development of oral diseases, the relationship between oral diseases and systemic diseases, and translation of the effect of lipid droplets on oral diseases into valuable clinical diagnostic and treatment methods. Herein, we reviewed the biogenesis and functions of lipid droplets and the progress in research concerning lipid droplets in oral diseases, including mouth neoplasms, periodontitis, and dental caries.
Subject(s)
Lipid Droplets , Humans , Lipid Droplets/metabolism , Lipid Metabolism , Mouth Diseases/metabolism , Obesity/metabolismABSTRACT
Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor ß (TGF-ß) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.
Subject(s)
NF-kappa B , Phosphatidylinositol 3-Kinases , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoprotegerin/metabolism , Osteoprotegerin/pharmacology , Bone and Bones/metabolism , Signal Transduction , Osteoclasts/metabolism , RANK Ligand/metabolism , RANK Ligand/pharmacologyABSTRACT
INTRODUCTION: Gelatinases, namely MMP2 and MMP9, are involved in the natural turnover of articular cartilage, as well as the loss of the cartilage matrix in osteoarthritis (OA). Studies have reported that fibroblast growth factor 8 (FGF8) promoted the degradation of cartilage in OA. In the present study, we predicted that FGF8 promoted chondrocyte expression and secretion of gelatinases by activating NF-κB p65 signaling. MATERIALS AND METHODS: Primary chondrocytes from C57 mice were cultured with recombinant FGF8. RNA sequencing was employed to explore the gene expression changes of gelatinases. Gelatin zymography was used to determine the activation of gelatinases. Western blot was used to investigate the expression of the gelatinases and NF-κB p65 signaling pathways, and immunofluorescence staining and NF-κB inhibitor assays were performed to confirm the activation of NF-κB p65 signaling. RESULTS: FGF8 could increase the expression and activity of gelatinases in primary chondrocytes. And FGF8-induced expression of gelatinases was regulated through activation of NF-κB signaling with acetylated p65 accumulating in the cell nucleus. We further found that the NF-κB inhibitor, BAY 11-7082, could suppress up-regulation of gelatinase induced by FGF8. CONCLUSION: FGF8 enhanced the expression and activity of MMP2 and MMP9 in chondrocytes via NF-κB p65 signaling.
Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , NF-kappa B/metabolism , Chondrocytes/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Gelatinases/metabolism , Fibroblast Growth Factor 8/metabolism , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Cells, CulturedABSTRACT
BACKGROUND: Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism. METHODS: qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes. RESULTS: Expression of PDGF-A mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation. CONCLUSION: For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.
Subject(s)
Connexin 43 , Phosphatidylinositol 3-Kinases , Cell Communication , Chondrocytes/metabolism , Connexin 43/metabolism , Gap Junctions/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-akt/metabolismABSTRACT
Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.
Subject(s)
Fructose-Bisphosphate Aldolase , Glucose-6-Phosphate Isomerase , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Triose-Phosphate Isomerase/metabolism , Chondrocytes/metabolism , Glucose/metabolism , Aspartate Aminotransferase, Cytoplasmic/metabolism , Phosphoglycerate Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Citrate (si)-Synthase/metabolism , Glycolysis , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphofructokinase-1/metabolism , Osteoblasts/metabolism , Communication , Lactates , Adenosine Triphosphate/metabolismABSTRACT
The proper development and the homeostasis maintenance of bones are important prerequisites for the normal functioning of the human body. Bone developmental deformities or homeostasis disorders, such as Kashin-Beck disease, craniosynostosis, cleft palate and osteoarthritis, severely affect the life of patients, causing significant stress to the family and the society. Fibroblast growth factor 8 (FGF8) plays multiple functions through the course of the life of organisms. Abnormal expression of FGF8 may cause disorders of bone homeostasis and developmental abnormalities of bones. More and more studies have found that FGF8 may play an important role in bone development and may become a potential therapeutic target. Herein, we reviewed the role of FGF8 in a variety of skeletal abnormalities, intending to provide new perspectives for the prevention and treatment of related diseases in the future.
Subject(s)
Bone Development , Fibroblast Growth Factors , Bone and Bones/metabolism , Fibroblast Growth Factor 8 , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Homeostasis , HumansABSTRACT
Osteoarthritis (OA) is a chronic degenerative disease involving the entire joint. The pathogenesis and progression of OA bear close connection to the destruction and the abnormal metabolism of cartilage, subchondral bones and synovium. Platelet derived growth factor-AA (PDGF-AA) is a critical mitogenic and chemotactic factor for a variety of cells, including chondrocytes, mesenchymal stem cells, osteoclasts and osteoblasts, and PDGF-AA promotes effective wound repair. This paper reviewed the pathological changes of cartilage, subchondral bones and synovium in the process of OA development, and summarized research progress regarding the effect of PDGF-AA on the tissues and related cells mentioned above. Current studies have basically clarified the pathological changes of cartilage, subchondral bones and synovium in OA patients, and have shown that PDGF-AA serves critical regulatory function in the tissues or cells involved in OA, the internal mechanism of which remains unclear, though. More studies should be done to find ways to apply PDGF-AA for clinic purpose and to diagnose and treat OA on the cellular basis.
Subject(s)
Cartilage, Articular , Osteoarthritis , Cartilage, Articular/pathology , Chondrocytes/pathology , Humans , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Platelet-Derived Growth Factor/metabolismABSTRACT
The homeostasis of the vertebrate body depends on anabolic and catabolic activities that are closely linked the inside and outside of the cell. Lipid metabolism plays an essential role in these metabolic activities. Although a large amount of evidence shows that normal lipid metabolism guarantees the conventional physiological activities of organs in the vertebrate body and that abnormal lipid metabolism plays an important role in the occurrence and deterioration of cardiovascular-related diseases, such as obesity, atherosclerosis, and type II diabetes, little is known about the role of lipid metabolism in cartilage and its diseases. This review aims to summarize the latest advances about the function of lipid metabolism in cartilage and its diseases including osteoarthritis, rheumatoid arthritis, and cartilage tumors. With the gradual in-depth understanding of lipid metabolism in cartilage, treatment methods could be explored to focus on this metabolic process in various cartilage diseases.
Subject(s)
Arthritis, Rheumatoid/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism , Osteoarthritis/metabolism , Arthritis, Rheumatoid/pathology , Cartilage, Articular/pathology , Chondrocytes/pathology , Diabetes Mellitus, Type 2/pathology , Humans , Osteoarthritis/pathologyABSTRACT
Chondrocytes have a limited supply of glucose and oxygen for metabolism since articular cartilages are relatively avascular. We herein reviewed the characteristics of chondrocyte glucose metabolism and the new research progress in chondrocyte glucose metabolism in the osteoarthritis process. Current research has shown that chondrocytes obtain glucose from synovial fluids and subchondral bones, take in glucose via specific glucose transporters, and metabolize glucose mainly through glycolysis and mitochondrial respiration to produce adenosine triphosphate (ATP). Glucose metabolism in chondrocytes is distinctive because it relies much more on glycolysis rather than mitochondrial respiration for ATP production, and shows Warburg effect and Crabtree effect. In osteoarthritic chondrocytes, the glucose metabolism disorder is presented as further suppression of mitochondrial respiration, over-active or impaired glycolysis, and decreased total production of ATP. However, the significance of the glucose supply for chondrocytes from synovial fluids and subchondral bones remains undefined. There are still disputes in the understanding of the changes in glycolytic pathways in osteoarthritic chondrocytes. Therefore, future research is needed to explore the characteristics of glucose metabolism in normal and osteoarthritic chondrocytes in order to develop new diagnostic and therapeutic strategies for osteoarthritis.
Subject(s)
Cartilage, Articular , Osteoarthritis , Chondrocytes , Glucose/metabolism , Glycolysis , Humans , Osteoarthritis/metabolismABSTRACT
INTRODUCTION: An accurate prediction in the soft tissue changes is of great importance for orthodontic treatment planning. Previous studies on the accuracy of the Dolphin visual treatment objective (VTO) in predicting treatment results were mainly focused on orthognathic treatment. The accuracy of Dolphin VTO prediction for orthodontic treatment is, however, poorly understood. The aim of this study was to evaluate the accuracy of Dolphin VTO prediction in soft tissue changes after orthodontic treatment by comparing the changes between predicted and actual values. METHODS: A total of 157 patients were screened for eligibility, and 34 young adult patients (8 males, 26 females; mean age 24.8 ± 3.9 years) were finally included in the study based on the inclusion and exclusion criteria. The landmarks and parameters of the Holdaway soft tissue analysis were used for the cephalometric analyses. The cephalometric tracings of the actual treatment result and the Dolphin predicted treatment outcome were superimposed to calculate the prediction errors. Paired t test was used to compare the statistical differences between the predicted and actual treatment outcomes of the parameters used in the Holdaway soft tissue analysis. RESULTS: There were significant differences between the predicted and actual values in parameters of the Holdaway soft tissue analysis (P < 0.05). The prediction of the landmarks in the lips region (ie, subnasale, soft tissue A-point, upper lip, lower lip, and soft tissue B-point) was inclined to be overestimated horizontally and underestimated vertically, whereas the prediction of the landmarks belonging to the chin region (ie, soft tissue pogonion, soft tissue gnathion, and soft tissue menton) was inclined to be underestimated horizontally and overestimated vertically. The most accurate prediction was found in the soft tissue A-point, whereas the least accurate one was found in the soft tissue in the chin region. The prediction was relatively more accurate in the vertical direction than in the horizontal direction. CONCLUSIONS: The Dolphin VTO prediction in soft tissue changes after the orthodontic treatment in patients with bimaxillary protrusion is the most accurate for the soft tissue A-point and the least accurate for the soft tissue chin region.
Subject(s)
Face , Malocclusion , Orthodontics, Corrective , Adult , Cephalometry , Chin , Face/anatomy & histology , Female , Forecasting , Humans , Lip , Male , Software , Young AdultABSTRACT
BACKGROUND: The direct and indirect bonding techniques are commonly used in orthodontic treatment. The differences of the two techniques deserve evidence-based study. MATERIALS AND METHODS: Randomized controlled trials (RCTs), wherein direct and indirect bonding techniques were used in orthodontic patients were considered. The MEDLINE, EMBASE, CENTRAL and Web of Science databases were searched to identify relevant articles published up to December 2018. Grey literature was also searched. Two authors performed data extraction independently and in duplicate using the data collection form. The included trials were assessed using the Cochrane risk of bias assessment tool. RESULTS: Of the 1557 studies screened, 42 full articles were scrutinized and assessed for eligibility. Eight RCTs (247 participants) were finally included for the analyses. The qualitative synthesis showed that no significant difference existed in the accuracy of bracket placement and oral hygiene status between the two bonding techniques. The indirect bonding was found to involve less chairside time but more total working time compared with the direct bonding. The meta-analysis on bond failure rate demonstrated no significant difference between the direct and indirect bonding (RR = 1.13, 95% CI = 0.78-1.64, I2 = 22%, P = 0.50). Consistent results were obtained in the subgroup analyses and sensitivity analyses. CONCLUSION: Weak evidence suggested that the direct and indirect bonding techniques had no significant difference in bracket placement accuracy, oral hygiene status and bond failure rate, for bonding orthodontic brackets. The indirect bonding might require less chairside time but more total working time in comparison with the direct bonding technique. High-quality well-designed randomized controlled trials are needed before a conclusive recommendation could be made.
Subject(s)
Dental Bonding , Orthodontic Brackets , HumansABSTRACT
Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-ß2 (TGF-ß2), one of the most abundant TGF-ß superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-ß superfamily members on cell metabolism, whether and how TGF-ß2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-ß2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-ß2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-ß2 signal entered chondrocytes via TGF-ß receptor type I (TßRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TßRI and p-Smad3 further substantiated the role of TGF-ß2 in enhancement of glycolysis via TßRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-ß superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.
Subject(s)
Chondrocytes , Glycolysis , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta2 , Chondrocytes/metabolism , Chondrocytes/drug effects , Smad3 Protein/metabolism , Animals , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Transforming Growth Factor beta2/metabolism , Humans , Cells, CulturedABSTRACT
It is well recognized that mitochondrial dynamics plays a vital role in cartilage physiology. Any perturbation in mitochondrial dynamics could cause disorders in cartilage metabolism and even lead to the occurrence of cartilage diseases such as osteoarthritis (OA). TGF-ß3, as an important growth factor that appears in the joints of OA disease, shows its great potential in chondrocyte growth and metabolism. Nevertheless, the role of TGF-ß3 on mitochondrial dynamics is still not well understood. Here we aimed to investigate the effect of TGF-ß3 on mitochondrial dynamics of chondrocytes and reveal its underlying bio-mechanism. By using transmission electron microscopy (TEM) for the number and morphology of mitochondria, western blotting for the protein expressions, immunofluorescence for the cytoplasmic distributions of proteins, and RNA sequencing for the transcriptome changes related to mitochondrial dynamics. We found that TGF-ß3 could increase the number of mitochondria in chondrocytes. TGF-ß3-enhanced mitochondrial number was via promoting the mitochondrial fission. The mitochondrial fission induced by TGF-ß3 was mediated by AMPK signaling. TGF-ß3 activated canonical p-Smad3 signaling and resultantly mediated AMPK-induced mitochondrial fission. Taken together, these results elucidate an understanding of the role of TGF-ß3 on mitochondrial dynamics in chondrocytes and provide potential cues for therapeutic strategies in cartilage injury and OA disease in terms of energy metabolism.
ABSTRACT
It is well recognized that the neighbor location between cartilage layer and subchondral bone facilitates the intercellular communication and material exchange. However, the evidence that demonstrates the influence of direct communication between cartilage and subchondral bone on their cell behaviors are still partially unknown. In the current study, we established a co-culture system of chondrocytes and osteoblasts aiming to explore the changes of intracellular metabolism of chondrocytes induced by osteoblasts. By using lactate assay kit, RNA sequencing, qRT-PCR and western blot, we found that osteoblasts enhanced the glycolysis in chondrocytes by characterizing the changes of lactate secretion and cytoplasmic expression, and gene expressions including glucose-6-phosphate isomerase 1 (Gpi1), phosphofructokinase, liver type (Pfkl), lactate dehydrogenase A (Ldha), aldolase, fructose-bisphosphate C (Aldoc), phosphoglycerate kinase 1 (Pgk1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and triosephosphate isomerase 1 (Tpi1). The enhanced glycolysis might be due to the activation of HIF-1 signaling and its downstream target, pyruvate dehydrogenase kinase1 (PDK1), by qRT-PCR, western blot and immunofluorescence. We also detected the up-regulation of ERK and p38/MAPK upstream signaling in chondrocytes induced by osteoblasts by western blot and immunofluorescence. The enhanced glycolysis in chondrocytes induced by osteoblasts could help us to better understand the intracellular metabolic mechanism of chondrocytes and cartilage disease occurrence.
Subject(s)
Chondrocytes , Glucose-6-Phosphate Isomerase , Chondrocytes/metabolism , Coculture Techniques , Fructose-Bisphosphate Aldolase/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis , Lactate Dehydrogenase 5 , Lactates/metabolism , Osteoblasts/metabolism , Phosphofructokinases/metabolism , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Pyruvates/metabolism , Triose-Phosphate Isomerase/metabolismABSTRACT
Gap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-ß1(TGF-ß1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-ß1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-ß1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell-cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-ß1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-ß1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
Subject(s)
Connexin 43 , Transforming Growth Factor beta1 , Cadherins , Cell Communication , OsteoblastsABSTRACT
OBJECTIVES: Previous reports have proposed the importance of signalling and material exchange between cartilage and subchondral bone. However, the specific experimental evidence is still insufficient to support the effect of this interdependent relationship on mutual cell behaviours. In this study, we aimed to investigate cellular lipid metabolism in chondrocytes induced by osteoblasts. METHODS: Osteoblast-induced chondrocytes were established in a Transwell chamber. A cholesterol detection kit was used to detect cholesterol contents. RNA sequencing and qPCR were performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Immunofluorescence staining was conducted to show the cellular distribution of proteins. RESULTS: Cholesterol levels were significantly decreased in chondrocytes induced by osteoblasts. Osteoblasts reduced cholesterol synthesis in chondrocytes by reducing the expression of a series of synthetases, including Fdft1, Sqle, Lss, Cyp51, Msmo1, Nsdhl, Sc5d, Dhcr24 and Dhcr7. This modulatory process involves Notch1 signalling. The expression of ncstn and hey1, an activator and a specific downstream target of Notch signalling, respectively, were decreased in chondrocytes induced by osteoblasts. CONCLUSIONS: For the first time, we elucidated that communication with osteoblasts reduces cholesterol synthesis in chondrocytes through Notch1 signalling. This result may provide a better understanding of the effect of subchondral bone signalling on chondrocytes.
Subject(s)
Cholesterol/biosynthesis , Chondrocytes/metabolism , Osteoblasts/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Animals , MiceABSTRACT
OBJECTIVE: The aim of this study was to demonstrate the influence of the virulence factor GroEL on osteoblast behavior by characterizing the changes of secreted gelatinases. DESIGN: ELISA was performed to detect GroEL from samples from patients with or without apical periodontitis. An apical periodontitis model was established in rats and the expression of MMP-2, MMP-9 and NF-κB was evaluated by immunofluorescence staining. The primary osteoblasts and osteoblast-like MC3T3 cells were stimulated with recombinant GroEL, and gelatin zymography was used to determine the activity and expression of MMP-2 and MMP-9. Western blot was used to screen signaling pathways, and immunofluorescence staining was performed to confirm the activated signaling. RESULTS: First, we found expression of GroEL to be higher in oral saliva, gingival crevicular fluid and periradicular granulation tissue of patients with apical periodontitis than it was in healthy control patients. We next found that recombinant GroEL could increase the activity of the gelatinases, MMP-2 and MMP-9, which were secreted by both primary osteoblasts and MC3T3 cells. In a rat apical periodontitis model, strong expression of gelatinases was confirmed. Then, we found that GroEL-enhanced gelatinase activity was mediated through activation of NF-κB signaling. Acetylated NF-κB accumulated in the cell nucleus and bound to the promoter of MMP-2 and MMP-9 genes, thus initiating their high expression. CONCLUSION: This study reveals a direct interaction between oral bacteria and adult cells by demonstrating that gelatinase secretion is induced by GroEL, which partially explains bone resorption through gelatinase activation.
Subject(s)
Chaperonin 60/metabolism , Gelatinases/metabolism , Osteoblasts/enzymology , Periodontitis/enzymology , Animals , Bacteria/pathogenicity , Bone Resorption , Cell Line , Humans , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice , NF-kappa B , Rats , Virulence Factors/metabolismABSTRACT
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.