Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 20(7): 928-942, 2019 07.
Article in English | MEDLINE | ID: mdl-31061532

ABSTRACT

To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Gene Expression Profiling , Synovial Membrane/metabolism , Transcriptome , Arthritis, Rheumatoid/pathology , Autoimmunity/genetics , Biomarkers , Computational Biology/methods , Cross-Sectional Studies , Cytokines/metabolism , Fibroblasts/metabolism , Flow Cytometry , Gene Expression , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Leukocytes/immunology , Leukocytes/metabolism , Monocytes/immunology , Monocytes/metabolism , Signal Transduction , Single-Cell Analysis/methods , Synovial Membrane/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Workflow
2.
Nat Immunol ; 19(12): 1330-1340, 2018 12.
Article in English | MEDLINE | ID: mdl-30420624

ABSTRACT

Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.


Subject(s)
Immunologic Surveillance/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Melanoma, Experimental/immunology , Obesity/immunology , Adult , Animals , Female , Humans , Killer Cells, Natural/pathology , Male , Melanoma, Experimental/complications , Mice , Mice, Inbred C57BL , Middle Aged , Obesity/complications , Young Adult
3.
Nature ; 623(7987): 616-624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938773

ABSTRACT

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Synovial Membrane/pathology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Genetic Predisposition to Disease/genetics , Phenotype , Single-Cell Gene Expression Analysis
4.
Article in English | MEDLINE | ID: mdl-38603565

ABSTRACT

Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.

5.
PLoS Biol ; 22(4): e3002605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687805

ABSTRACT

Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.


Subject(s)
Drosophila , Germ Cells , Meiosis , RNA-Seq , Sex Chromosomes , Single-Cell Analysis , Testis , Animals , Male , Testis/metabolism , Sex Chromosomes/genetics , Single-Cell Analysis/methods , Germ Cells/metabolism , Drosophila/genetics , Drosophila/metabolism , RNA-Seq/methods , Meiosis/genetics , Dosage Compensation, Genetic , Evolution, Molecular , Female , X Chromosome/genetics , Single-Cell Gene Expression Analysis
6.
PLoS Biol ; 22(7): e3002697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39024225

ABSTRACT

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1 Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.


Subject(s)
Drosophilidae , Genome, Insect , Genomics , Phylogeny , Animals , Drosophilidae/genetics , Drosophilidae/classification , Genomics/methods , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
7.
Immunity ; 46(2): 220-232, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228280

ABSTRACT

Fibroblasts are major contributors to and regulators of inflammation and dominant producers of interleukin-6 (IL-6) in inflammatory diseases like rheumatoid arthritis. Yet, compared to leukocytes, the regulation of inflammatory pathways in fibroblasts is largely unknown. Here, we report that analyses of genes coordinately upregulated with IL-6 pointed to STAT4 and leukemia inhibitory factor (LIF) as potentially linked. Gene silencing revealed that STAT4 was required for IL-6 transcription. STAT4 was recruited to the IL-6 promoter after fibroblast activation, and LIF receptor (LIFR) and STAT4 formed a molecular complex that, together with JAK1 and TYK2 kinases, controlled STAT4 activation. Importantly, a positive feedback loop involving autocrine LIF, LIFR, and STAT4 drove sustained IL-6 transcription. Besides IL-6, this autorine loop also drove the production of other key inflammatory factors including IL-8, granulocyte-colony stimulating factor (G-CSF), IL-33, IL-11, IL-1α, and IL-1ß. These findings define the transcriptional regulation of fibroblast-mediated inflammation as distinct from leukocytes.


Subject(s)
Autocrine Communication/immunology , Fibroblasts/immunology , Gene Expression Regulation/immunology , Leukemia Inhibitory Factor/immunology , Receptors, OSM-LIF/immunology , Arthritis, Rheumatoid/immunology , Cells, Cultured , Cytokines/biosynthesis , Gene Expression Profiling , Humans , Inflammation/immunology , Interleukin-6/immunology , STAT4 Transcription Factor/immunology , Synovial Membrane/immunology , Transcriptome
8.
Nature ; 582(7811): 259-264, 2020 06.
Article in English | MEDLINE | ID: mdl-32499639

ABSTRACT

The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint1,2. It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity3-5; however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


Subject(s)
Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Receptor, Notch3/metabolism , Signal Transduction , Synovial Membrane/pathology , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Endothelial Cells/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Receptor, Notch3/antagonists & inhibitors , Receptor, Notch3/deficiency , Receptor, Notch3/genetics , Thy-1 Antigens/metabolism
9.
Nature ; 570(7760): 246-251, 2019 06.
Article in English | MEDLINE | ID: mdl-31142839

ABSTRACT

The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs)1,2. However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage3-5. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα)+ fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα+ population: FAPα+THY1+ immune effector fibroblasts located in the synovial sub-lining, and FAPα+THY1- destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα+THY1- fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα+ THY1+ fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.


Subject(s)
Arthritis, Rheumatoid/pathology , Fibroblasts/pathology , Animals , Bone and Bones/pathology , Endopeptidases , Female , Fibroblasts/classification , Fibroblasts/metabolism , Gelatinases/metabolism , Humans , Inflammation/pathology , Joints/pathology , Male , Membrane Proteins/metabolism , Mice , RNA-Seq , Serine Endopeptidases/metabolism , Single-Cell Analysis , Synovial Membrane/pathology , Thy-1 Antigens/metabolism
10.
Proc Natl Acad Sci U S A ; 119(19): e2119382119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35512091

ABSTRACT

Sex chromosomes play a special role in the evolution of reproductive barriers between species. Here we describe conflicting roles of nascent sex chromosomes on patterns of introgression in an experimental hybrid swarm. Drosophila nasuta and Drosophila albomicans are recently diverged, fully fertile sister species that have different sex chromosome systems. The fusion between an autosome (Muller CD) with the ancestral X and Y gave rise to neo-sex chromosomes in D. albomicans, while Muller CD remains unfused in D. nasuta. We found that a large block containing overlapping inversions on the neo-sex chromosome stood out as the strongest barrier to introgression. Intriguingly, the neo-sex chromosome introgression barrier is asymmetrical and sex-dependent. Female hybrids showed significant D. albomicans­biased introgression on Muller CD (neo-X excess), while males showed heterosis with excessive (neo-X, D. nasuta Muller CD) genotypes. We used a population genetic model to dissect the interplay of sex chromosome drive, heterospecific pairing incompatibility between the neo-sex chromosomes and unfused Muller CD, neo-Y disadvantage, and neo-X advantage in generating the observed sex chromosome genotypes in females and males. We show that moderate neo-Y disadvantage and D. albomicans specific meiotic drive are required to observe female-specific D. albomicans­biased introgression in this system, together with pairing incompatibility and neo-X advantage. In conclusion, this hybrid swarm between a young species pair sheds light onto the multifaceted roles of neo-sex chromosomes in a sex-dependent asymmetrical introgression barrier at a species boundary.


Subject(s)
Sex Chromosomes , Y Chromosome , Animals , Drosophila/genetics , Evolution, Molecular , Sex Chromosomes/genetics
11.
Curr Rheumatol Rep ; 26(4): 144-154, 2024 04.
Article in English | MEDLINE | ID: mdl-38227172

ABSTRACT

PURPOSE OF REVIEW: Single-cell profiling, either in suspension or within the tissue context, is a rapidly evolving field. The purpose of this review is to outline recent advancements and emerging trends with a specific focus on studies in spondyloarthritis. RECENT FINDINGS: The introduction of sequencing-based approaches for the quantification of RNA, protein, or epigenetic modifications at single-cell resolution has provided a major boost to discovery-driven research. Fluorescent flow cytometry, mass cytometry, and image-based cytometry continue to evolve. Spatial transcriptomics and imaging mass cytometry have extended high-dimensional analysis to cells in tissues. Applications in spondyloarthritis include the indexing and functional characterization of cells, discovery of disease-associated cell states, and identification of signatures associated with therapeutic responses. Single-cell TCR-seq has provided evidence for clonal expansion of CD8+ T cells in spondyloarthritis. The use of single-cell profiling approaches in spondyloarthritis research is still in its early stages. Challenges include high cost and limited availability of diseased tissue samples. To harness the full potential of the rapidly expanding technical capabilities, large-scale collaborative efforts are imperative.


Subject(s)
Gene Expression Profiling , Humans , Gene Expression Profiling/methods
12.
Mol Biol Evol ; 39(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35485457

ABSTRACT

Transposable element (TE) mobilization is a constant threat to genome integrity. Eukaryotic organisms have evolved robust defensive mechanisms to suppress their activity, yet TEs can escape suppression and proliferate, creating strong selective pressure for host defense to adapt. This genomic conflict fuels a never-ending arms race that drives the rapid evolution of TEs and recurrent positive selection of genes involved in host defense; the latter has been shown to contribute to postzygotic hybrid incompatibility. However, how TE proliferation impacts genome and regulatory divergence remains poorly understood. Here, we report the highly complete and contiguous (N50 = 33.8-38.0 Mb) genome assemblies of seven closely related Drosophila species that belong to the nasuta species group-a poorly studied group of flies that radiated in the last 2 My. We constructed a high-quality de novo TE library and gathered germline RNA-seq data, which allowed us to comprehensively annotate and compare TE insertion patterns between the species, and infer the evolutionary forces controlling their spread. We find a strong negative association between TE insertion frequency and expression of genes nearby; this likely reflects survivor bias from reduced fitness impact of TEs inserting near lowly expressed, nonessential genes, with limited TE-induced epigenetic silencing. Phylogenetic analyses of insertions of 147 TE families reveal that 53% of them show recent amplification in at least one species. The most highly amplified TE is a nonautonomous DNA element (Drosophila INterspersed Element; DINE) which has gone through multiple bouts of expansions with thousands of full-length copies littered throughout each genome. Across all TEs, we find that TEs expansions are significantly associated with high expression in the expanded species consistent with suppression escape. Thus, whereas horizontal transfer followed by the invasion of a naïve genome has been highlighted to explain the long-term survival of TEs, our analysis suggests that evasion of host suppression of resident TEs is a major strategy to persist over evolutionary times. Altogether, our results shed light on the heterogenous and context-dependent nature in which TEs affect gene regulation and the dynamics of rampant TE proliferation amidst a recently radiated species group.


Subject(s)
DNA Transposable Elements , Drosophila , Animals , Cell Proliferation , DNA Transposable Elements/genetics , Drosophila/genetics , Evolution, Molecular , Humans , Phylogeny
13.
Nature ; 542(7639): 110-114, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28150777

ABSTRACT

CD4+ T cells are central mediators of autoimmune pathology; however, defining their key effector functions in specific autoimmune diseases remains challenging. Pathogenic CD4+ T cells within affected tissues may be identified by expression of markers of recent activation. Here we use mass cytometry to analyse activated T cells in joint tissue from patients with rheumatoid arthritis, a chronic immune-mediated arthritis that affects up to 1% of the population. This approach revealed a markedly expanded population of PD-1hiCXCR5-CD4+ T cells in synovium of patients with rheumatoid arthritis. However, these cells are not exhausted, despite high PD-1 expression. Rather, using multidimensional cytometry, transcriptomics, and functional assays, we define a population of PD-1hiCXCR5- 'peripheral helper' T (TPH) cells that express factors enabling B-cell help, including IL-21, CXCL13, ICOS, and MAF. Like PD-1hiCXCR5+ T follicular helper cells, TPH cells induce plasma cell differentiation in vitro through IL-21 secretion and SLAMF5 interaction (refs 3, 4). However, global transcriptomics highlight differences between TPH cells and T follicular helper cells, including altered expression of BCL6 and BLIMP1 and unique expression of chemokine receptors that direct migration to inflamed sites, such as CCR2, CX3CR1, and CCR5, in TPH cells. TPH cells appear to be uniquely poised to promote B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues.


Subject(s)
Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , B-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , Arthritis, Rheumatoid/blood , B-Lymphocytes/pathology , Cell Differentiation , Cell Movement , Chemokine CXCL13/metabolism , Gene Expression Profiling , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukins/metabolism , Macrophage-Activating Factors , Positive Regulatory Domain I-Binding Factor 1 , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptors, CXCR5/deficiency , Receptors, CXCR5/metabolism , Receptors, Chemokine/metabolism , Repressor Proteins/metabolism , Signaling Lymphocytic Activation Molecule Family/metabolism , Synovial Fluid/immunology , T-Lymphocytes, Helper-Inducer/metabolism
14.
Arch Orthop Trauma Surg ; 143(1): 353-358, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34985565

ABSTRACT

INTRODUCTION: Elderly patients with concomitant upper limb and hip fractures present a management dilemma because upper limb fractures potentially affect rehabilitation outcomes for the hip fracture. This study aims to evaluate whether the site of upper limb fractures and the decision to surgically treat such fractures affect the functional outcome of surgically treated hip fracture patients. METHODOLOGY: We retrospectively reviewed 1828 hip fracture patients treated at a single trauma centre over 3 years, of whom 42 with surgically treated hip fractures had concomitant upper limb fractures. Outcome measures, such as length of hospital stay, complications, mortality and readmission rates, were assessed, whilst the functional outcomes were evaluated using the Modified Barthel Index (MBI) on admission, post-operatively and at 6 and 12 months of follow-up. RESULTS: Amongst the 42 patients with surgically treated hip fractures, 31.0% had proximal humerus fractures, 50.0% had wrist fractures, 16.7% had elbow fractures and 2.4% had forearm fractures. 50.0% of these upper limb fractures were treated surgically. There was no difference in complications, inpatient morbidity, readmission rates or the length of hospital stay for patients whose upper limb fractures were surgically treated as compared to those non-surgically treated. There was no difference in absolute MBI scores at 6 and 12 months based on the management of upper limb fractures. However, patients with surgically treated wrist fractures had statistically significant higher MBI scores at 6 months as compared to those treated non-surgically. CONCLUSION: Surgical treatment of concomitant upper limb fractures does not appear to change the outcomes of the hip fractures. Hip fracture patients with surgically treated wrist fractures had better functional outcomes at 6 months compared to those treated non-surgically; however, there was no difference at 12 months. Hip fracture patients with concomitant wrist fractures had better functional outcomes compared to hip fracture patients with proximal humerus fractures.


Subject(s)
Arm Injuries , Hip Fractures , Humeral Fractures , Shoulder Fractures , Wrist Injuries , Humans , Aged , Retrospective Studies , Hip Fractures/complications , Hip Fractures/surgery , Hip Fractures/epidemiology , Treatment Outcome , Wrist Injuries/complications , Upper Extremity , Humeral Fractures/complications
15.
J Med Syst ; 47(1): 10, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36640221

ABSTRACT

Telemedicine (TM) is a useful tool to extend medical care during a pandemic. TM was extensively utilized in Singapore during the COVID-19 pandemic as part of the Nation's COVID-19 healthcare strategy. Patients were risk stratified to prioritize limited healthcare resources and the Telemedicine Allocation Reconciliation System (TMARS) was adapted to monitor and manage limited TM resources. High-Risk patients (Protocol 1) had an escalation rate of 4.87%, compared to the non-High-Risk patients' 0.002% and TM doctors spent an average of six hours to complete one tele-consultation. In order to optimize the efficiency of the TM system, an enhanced monitoring system was implemented in March 2022. The intent was to focus monitoring efforts on the High-Risk patients. High-Risk patients reporting sick for the first time were prioritized to receive tele-consultations through this system. With the aid of a data-driven dashboard, the Operations Control and Monitoring team (OCM) was able to closely monitor the performance of the various TM providers (TMPs), sent them timely reminders and re-assigned patients to other TMPs when the requisite turnaround time was not met. Implementing the enhanced monitoring system resulted in a significant reduction in the average time taken to provide tele-consultations. After 3 months of implementation, the percentages of consultations completed within two hours were raised from 75.7% (February 2022) to 96.8% (May 2022), greatly increasing productivity and efficiency.


Subject(s)
COVID-19 , Telemedicine , Humans , COVID-19/epidemiology , Pandemics , Telemedicine/methods , Delivery of Health Care , Monitoring, Physiologic
16.
Nat Methods ; 16(12): 1289-1296, 2019 12.
Article in English | MEDLINE | ID: mdl-31740819

ABSTRACT

The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of ~106 cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.


Subject(s)
Single-Cell Analysis/methods , Algorithms , Animals , Base Sequence , Datasets as Topic , HEK293 Cells , Humans , Jurkat Cells , Mice
17.
PLoS Genet ; 15(11): e1008502, 2019 11.
Article in English | MEDLINE | ID: mdl-31738748

ABSTRACT

Male Drosophila typically have achiasmatic meiosis, and fusions between autosomes and the Y chromosome have repeatedly created non-recombining neo-Y chromosomes that degenerate. Intriguingly, Drosophila nasuta males recombine, but their close relative D. albomicans reverted back to achiasmy after evolving neo-sex chromosomes. Here we use genome-wide polymorphism data to reconstruct the complex evolutionary history of neo-sex chromosomes in D. albomicans and examine the effect of recombination and its cessation on the initiation of neo-Y decay. Population and phylogenomic analyses reveal three distinct neo-Y types that are geographically restricted. Due to ancestral recombination with the neo-X, overall nucleotide diversity on the neo-Y is similar to the neo-X but severely reduced within neo-Y types. Consistently, the neo-Y chromosomes fail to form a monophyletic clade in sliding window trees outside of the region proximal to the fusion. Based on tree topology changes, we inferred the recombination breakpoints that produced haplotypes specific to each neo-Y type. We show that recombination became suppressed at different time points for the different neo-Y haplotypes. Haplotype age correlates with onset of neo-Y decay, and older neo-Y haplotypes show more fixed gene disruption via frameshift indels and down-regulation of neo-Y alleles. Genes are downregulated independently on the different neo-Ys, but are depleted of testes-expressed genes across all haplotypes. This indicates that genes important for male function are initially shielded from degeneration. Our results offer a time course of the early progression of Y chromosome evolution, showing how the suppression of recombination, through the reversal to achiasmy in D. albomicans males, initiates the process of degeneration.


Subject(s)
Evolution, Molecular , Meiosis/genetics , Recombination, Genetic , Y Chromosome/genetics , Alleles , Animals , Drosophila/genetics , Female , Haplotypes , Male , Phylogeny , X Chromosome/genetics
18.
Mol Biol Evol ; 37(12): 3654-3671, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32658965

ABSTRACT

Recombination is the exchange of genetic material between homologous chromosomes via physical crossovers. High-throughput sequencing approaches detect crossovers genome wide to produce recombination rate maps but are difficult to scale as they require large numbers of recombinants individually sequenced. We present a simple and scalable pooled-sequencing approach to experimentally infer near chromosome-wide recombination rates by taking advantage of non-Mendelian allele frequency generated from a fitness differential at a locus under selection. As more crossovers decouple the selected locus from distal loci, the distorted allele frequency attenuates distally toward Mendelian and can be used to estimate the genetic distance. Here, we use marker selection to generate distorted allele frequency and theoretically derive the mathematical relationships between allele frequency attenuation, genetic distance, and recombination rate in marker-selected pools. We implemented nonlinear curve-fitting methods that robustly estimate the allele frequency decay from batch sequencing of pooled individuals and derive chromosome-wide genetic distance and recombination rates. Empirically, we show that marker-selected pools closely recapitulate genetic distances inferred from scoring recombinants. Using this method, we generated novel recombination rate maps of three wild-derived strains of Drosophila melanogaster, which strongly correlate with previous measurements. Moreover, we show that this approach can be extended to estimate chromosome-wide crossover interference with reciprocal marker selection and discuss how it can be applied in the absence of visible markers. Altogether, we find that our method is a simple and cost-effective approach to generate chromosome-wide recombination rate maps requiring only one or two libraries.


Subject(s)
Gene Frequency , Genetic Techniques , Models, Genetic , Recombination, Genetic , Animals , Drosophila melanogaster , Female , Genetic Fitness , Male , Selection, Genetic , X Chromosome
19.
N Engl J Med ; 378(15): 1396-1407, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29641966

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. METHODS: We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. RESULTS: We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. CONCLUSIONS: We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).


Subject(s)
Gene Expression Profiling , Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Epigenesis, Genetic , Exome , Genotype , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/mortality , Prognosis , Sequence Analysis, DNA , Transcriptome
20.
PLoS Biol ; 16(7): e2006348, 2018 07.
Article in English | MEDLINE | ID: mdl-30059545

ABSTRACT

While short-read sequencing technology has resulted in a sharp increase in the number of species with genome assemblies, these assemblies are typically highly fragmented. Repeats pose the largest challenge for reference genome assembly, and pericentromeric regions and the repeat-rich Y chromosome are typically ignored from sequencing projects. Here, we assemble the genome of Drosophila miranda using long reads for contig formation, chromatin interaction maps for scaffolding and short reads, and optical mapping and bacterial artificial chromosome (BAC) clone sequencing for consensus validation. Our assembly recovers entire chromosomes and contains large fractions of repetitive DNA, including about 41.5 Mb of pericentromeric and telomeric regions, and >100 Mb of the recently formed highly repetitive neo-Y chromosome. While Y chromosome evolution is typically characterized by global sequence loss and shrinkage, the neo-Y increased in size by almost 3-fold because of the accumulation of repetitive sequences. Our high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.


Subject(s)
Chromatin/chemistry , Drosophila/genetics , Nucleic Acid Conformation , Sequence Analysis, DNA , Y Chromosome/genetics , Animals , Base Sequence , Centromere/metabolism , Evolution, Molecular , Genes, Insect , Karyotype , Male , Repetitive Sequences, Nucleic Acid/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL