Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.948
Filter
Add more filters

Publication year range
1.
Nature ; 629(8010): 114-120, 2024 May.
Article in English | MEDLINE | ID: mdl-38538797

ABSTRACT

Mountain ranges contain high concentrations of endemic species and are indispensable refugia for lowland species that are facing anthropogenic climate change1,2. Forecasting biodiversity redistribution hinges on assessing whether species can track shifting isotherms as the climate warms3,4. However, a global analysis of the velocities of isotherm shifts along elevation gradients is hindered by the scarcity of weather stations in mountainous regions5. Here we address this issue by mapping the lapse rate of temperature (LRT) across mountain regions globally, both by using satellite data (SLRT) and by using the laws of thermodynamics to account for water vapour6 (that is, the moist adiabatic lapse rate (MALRT)). By dividing the rate of surface warming from 1971 to 2020 by either the SLRT or the MALRT, we provide maps of vertical isotherm shift velocities. We identify 17 mountain regions with exceptionally high vertical isotherm shift velocities (greater than 11.67 m per year for the SLRT; greater than 8.25 m per year for the MALRT), predominantly in dry areas but also in wet regions with shallow lapse rates; for example, northern Sumatra, the Brazilian highlands and southern Africa. By linking these velocities to the velocities of species range shifts, we report instances of close tracking in mountains with lower climate velocities. However, many species lag behind, suggesting that range shift dynamics would persist even if we managed to curb climate-change trajectories. Our findings are key for devising global conservation strategies, particularly in the 17 high-velocity mountain regions that we have identified.


Subject(s)
Altitude , Animal Migration , Biodiversity , Geographic Mapping , Global Warming , Animals , Africa, Southern , Brazil , Conservation of Natural Resources , Global Warming/statistics & numerical data , Humidity , Indonesia , Rain , Refugium , Satellite Imagery , Species Specificity , Temperature , Time Factors
2.
Immunity ; 53(2): 456-470.e6, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32758419

ABSTRACT

Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.


Subject(s)
Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , Down-Regulation , Female , Humans , Immunologic Memory/immunology , Immunotherapy, Adoptive , Jurkat Cells , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mitochondria/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/cytology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Ubiquitination , Xenograft Model Antitumor Assays
3.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38359296

ABSTRACT

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Subject(s)
Clonal Hematopoiesis , Hematopoiesis , Humans , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Aging/genetics , Mutation , Biomarkers
4.
Plant J ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843154

ABSTRACT

Ghost introgression, or the transfer of genetic material from extinct or unsampled lineages to sampled species, has attracted much attention. However, conclusive evidence for ghost introgression, especially in plant species, remains scarce. Here, we newly assembled chromosome-level genomes for both Carya sinensis and Carya cathayensis, and additionally re-sequenced the whole genomes of 43 C. sinensis individuals as well as 11 individuals representing 11 diploid hickory species. These genomic datasets were used to investigate the reticulation and bifurcation patterns within the genus Carya (Juglandaceae), with a particular focus on the beaked hickory C. sinensis. By combining the D-statistic and BPP methods, we obtained compelling evidence that supports the occurrence of ghost introgression in C. sinensis from an extinct ancestral hickory lineage. This conclusion was reinforced through the phylogenetic network analysis and a genome scan method VolcanoFinder, the latter of which can detect signatures of adaptive introgression from unknown donors. Our results not only dispel certain misconceptions about the phylogenetic history of C. sinensis but also further refine our understanding of Carya's biogeography via divergence estimates. Moreover, the successful integration of the D-statistic and BPP methods demonstrates their efficacy in facilitating a more precise identification of introgression types.

5.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875478

ABSTRACT

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

6.
Nature ; 571(7763): 127-131, 2019 07.
Article in English | MEDLINE | ID: mdl-31243371

ABSTRACT

Cancer metastasis is the primary cause of morbidity and mortality, and accounts for up to 95% of cancer-related deaths1. Cancer cells often reprogram their metabolism to efficiently support cell proliferation and survival2,3. However, whether and how those metabolic alterations contribute to the migration of tumour cells remain largely unknown. UDP-glucose 6-dehydrogenase (UGDH) is a key enzyme in the uronic acid pathway, and converts UDP-glucose to UDP-glucuronic acid4. Here we show that, after activation of EGFR, UGDH is phosphorylated at tyrosine 473 in human lung cancer cells. Phosphorylated UGDH interacts with Hu antigen R (HuR) and converts UDP-glucose to UDP-glucuronic acid, which attenuates the UDP-glucose-mediated inhibition of the association of HuR with SNAI1 mRNA and therefore enhances the stability of SNAI1 mRNA. Increased production of SNAIL initiates the epithelial-mesenchymal transition, thus promoting the migration of tumour cells and lung cancer metastasis. In addition, phosphorylation of UGDH at tyrosine 473 correlates with metastatic recurrence and poor prognosis of patients with lung cancer. Our findings reveal a tumour-suppressive role of UDP-glucose in lung cancer metastasis and uncover a mechanism by which UGDH promotes tumour metastasis by increasing the stability of SNAI1 mRNA.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/prevention & control , RNA Stability , Snail Family Transcription Factors/genetics , Uridine Diphosphate Glucose/metabolism , Animals , Cell Line, Tumor , Cell Movement , ELAV-Like Protein 1/deficiency , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Epithelial-Mesenchymal Transition , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Mice , Mice, Nude , Phosphotyrosine/metabolism , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Snail Family Transcription Factors/biosynthesis , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Uridine Diphosphate Glucuronic Acid/metabolism
7.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38508705

ABSTRACT

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Subject(s)
Epilepsies, Partial , Exome Sequencing , Spasms, Infantile , Humans , Spasms, Infantile/genetics , Male , Female , Epilepsies, Partial/genetics , Epilepsies, Partial/drug therapy , Animals , Infant , Child, Preschool , Homeodomain Proteins/genetics , Child , Genetic Predisposition to Disease , Mutation
8.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914168

ABSTRACT

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Subject(s)
Calcium Channels, L-Type , Hippocampus , Neuronal Plasticity , RNA Editing , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Hippocampus/metabolism , Mammals/metabolism , Mice , Neuronal Plasticity/genetics , Neurons/metabolism , Pyramidal Cells/metabolism
9.
J Biol Chem ; 299(8): 104953, 2023 08.
Article in English | MEDLINE | ID: mdl-37356717

ABSTRACT

Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear. In this study, we identified a novel mutation in CRYBB1 from a congenital cataract family, and demonstrated that this mutation led to an early termination of mRNA translation, resulting in a 49-residue C-terminally truncated CRYßB1 protein. We show this mutant is susceptible to proteolysis, which allowed us to determine a 1.2-Å resolution crystal structure of CRYßB1 without the entire C-terminal domain. In this crystal lattice, we observed that two N-terminal domain monomers form a dimer that structurally resembles the WT monomer, but with different surface characteristics. Biochemical analyses and cell-based data also suggested that this mutant is significantly more liable to aggregate and degrade compared to WT CRYßB1. Taken together, our results provide an insight into the mechanism regarding how a mutant crystalin contributes to the development of congenital cataract possibly through alteration of inter-protein interactions that result in protein aggregation.


Subject(s)
Cataract , Crystallins , Lens, Crystalline , Humans , Cataract/metabolism , Crystallins/genetics , Lens, Crystalline/metabolism , Mutation , Protein Aggregates
10.
Mol Biol Evol ; 40(6): msad121, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37325551

ABSTRACT

When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes, and its only congeneric species, P. strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics, and the driving forces underneath the incipient speciation of the two Platycarya lineages.


Subject(s)
Calcium Carbonate , Juglandaceae , Calcium , Genetic Speciation , Genomics
11.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37216901

ABSTRACT

When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.


Subject(s)
Calcium Carbonate , Juglandaceae , Asia, Eastern , Calcium , Genetic Speciation , Genomics , Juglandaceae/genetics , Juglandaceae/physiology
12.
Eur J Immunol ; 53(12): e2250182, 2023 12.
Article in English | MEDLINE | ID: mdl-37615189

ABSTRACT

Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.


Subject(s)
Melanoma, Experimental , T-Lymphocytes, Regulatory , Mice , Animals , CD8-Positive T-Lymphocytes , T-Lymphocyte Subsets , Melanoma, Experimental/therapy , Immunity
13.
Radiology ; 311(1): e231461, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652028

ABSTRACT

Background Noninvasive tests can be used to screen patients with chronic liver disease for advanced liver fibrosis; however, the use of single tests may not be adequate. Purpose To construct sequential clinical algorithms that include a US deep learning (DL) model and compare their ability to predict advanced liver fibrosis with that of other noninvasive tests. Materials and Methods This retrospective study included adult patients with a history of chronic liver disease or unexplained abnormal liver function test results who underwent B-mode US of the liver between January 2014 and September 2022 at three health care facilities. A US-based DL network (FIB-Net) was trained on US images to predict whether the shear-wave elastography (SWE) value was 8.7 kPa or higher, indicative of advanced fibrosis. In the internal and external test sets, a two-step algorithm (Two-step#1) using the Fibrosis-4 Index (FIB-4) followed by FIB-Net and a three-step algorithm (Three-step#1) using FIB-4 followed by FIB-Net and SWE were used to simulate screening scenarios where liver stiffness measurements were not or were available, respectively. Measures of diagnostic accuracy were calculated using liver biopsy as the reference standard and compared between FIB-4, SWE, FIB-Net, and European Association for the Study of the Liver guidelines (ie, FIB-4 followed by SWE), along with sequential algorithms. Results The training, validation, and test data sets included 3067 (median age, 42 years [IQR, 33-53 years]; 2083 male), 1599 (median age, 41 years [IQR, 33-51 years]; 1124 male), and 1228 (median age, 44 years [IQR, 33-55 years]; 741 male) patients, respectively. FIB-Net obtained a noninferior specificity with a margin of 5% (P < .001) compared with SWE (80% vs 82%). The Two-step#1 algorithm showed higher specificity and positive predictive value (PPV) than FIB-4 (specificity, 79% vs 57%; PPV, 44% vs 32%) while reducing unnecessary referrals by 42%. The Three-step#1 algorithm had higher specificity and PPV compared with European Association for the Study of the Liver guidelines (specificity, 94% vs 88%; PPV, 73% vs 64%) while reducing unnecessary referrals by 35%. Conclusion A sequential algorithm combining FIB-4 and a US DL model showed higher diagnostic accuracy and improved referral management for all-cause advanced liver fibrosis compared with FIB-4 or the DL model alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ghosh in this issue.


Subject(s)
Algorithms , Elasticity Imaging Techniques , Liver Cirrhosis , Humans , Male , Liver Cirrhosis/diagnostic imaging , Middle Aged , Female , Retrospective Studies , Elasticity Imaging Techniques/methods , Adult , Deep Learning , Liver/diagnostic imaging , Liver/pathology , Aged , Ultrasonography/methods
14.
J Transl Med ; 22(1): 211, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419085

ABSTRACT

BACKGROUND: Lactylation, a novel contributor to post-translational protein modifications, exhibits dysregulation across various tumors. Nevertheless, its intricate involvement in colorectal carcinoma, particularly for non-histone lactylation and its intersection with metabolism and immune evasion, remains enigmatic. METHODS: Employing immunohistochemistry on tissue microarray with clinical information and immunofluorescence on colorectal cell lines, we investigated the presence of global lactylation and its association with development and progression in colorectal cancer as well as its functional location. Leveraging the AUCell algorithm alongside correlation analysis in single-cell RNA sequencing data, as well as cox-regression and lasso-regression analysis in TCGA dataset and confirmed in GEO dataset, we identified a 23-gene signature predicting colorectal cancer prognosis. Subsequently, we analyzed the associations between the lactylation related gene risk and clinical characteristics, mutation landscapes, biological functions, immune cell infiltration, immunotherapy responses, and drug sensitivity. Core genes were further explored for deep biological insights through bioinformatics and in vitro experiments. RESULTS: Our study innovatively reveals a significant elevation of global lactylation in colorectal cancer, particularly in malignant tumors, confirming it as an independent prognostic factor for CRC. Through a comprehensive analysis integrating tumor tissue arrays, TCGA dataset, GEO dataset, combining in silico investigations and in vitro experiments, we identified a 23-gene Lactylation-Related Gene risk model capable of predicting the prognosis of colorectal cancer patients. Noteworthy variations were observed in clinical characteristics, biological functions, immune cell infiltration, immune checkpoint expression, immunotherapy responses and drug sensitivity among distinct risk groups. CONCLUSIONS: The Lactylation-Related Gene risk model exhibits significant potential for improving the management of colorectal cancer patients and enhancing therapeutic outcomes, particularly at the intersection of metabolism and immune evasion. This finding underscores the clinical relevance of global lactylation in CRC and lays the groundwork for mechanism investigation and targeted therapeutic strategies given the high lactate concentration in CRC.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Humans , Prognosis , Algorithms , Cell Line , Colorectal Neoplasms/genetics , Tumor Microenvironment
15.
Clin Genet ; 105(4): 397-405, 2024 04.
Article in English | MEDLINE | ID: mdl-38173219

ABSTRACT

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Subject(s)
Epilepsies, Partial , Epilepsy , Hydrocephalus , Infant , Adult , Humans , Epilepsies, Partial/genetics , Epilepsy/genetics , Hydrocephalus/genetics , Genotype , Genetic Association Studies , Microfilament Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
16.
Chemistry ; : e202401593, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923644

ABSTRACT

Bioinspired molecular engineering strategies have emerged as powerful tools that significantly enhance the development of novel therapeutics, improving efficacy, specificity, and safety in disease treatment. Recent advancements have focused on identifying and utilizing disease-associated biomarkers to optimize drug activity and address challenges inherent in traditional therapeutics, such as frequent drug administrations, poor patient adherence, and increased risk of adverse effects. In this review, we provide a comprehensive overview of the latest developments in bioinspired artificial systems (BAS) that use molecular engineering to tailor therapeutic responses to drugs in the presence of disease-specific biomarkers. We examine the transition from open-loop systems, which rely on external cues, to closed-loop feedback systems capable of autonomous self-regulation in response to disease-associated biomarkers. We detail various BAS modalities designed to achieve biomarker-driven therapy, including activatable prodrug molecules, smart drug delivery platforms, autonomous artificial cells, and synthetic receptor-based cell therapies, elucidating their operational principles and practical in vivo applications. Finally, we discuss the current challenges and future perspectives in the advancement of BAS-enabled technology and envision that ongoing advancements toward more programmable and customizable BAS-based therapeutics will significantly enhance precision medicine.

17.
Ann Hematol ; 103(1): 163-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37817010

ABSTRACT

The present study aimed to investigate the clinical features, prognosis, and treatment of advanced-stage non-nasal type extranodal natural killer/T-cell lymphoma (ENKTCL). This real-world study retrospectively reviewed 56 newly diagnosed advanced-stage non-nasal type ENKTCL patients from two large-scale Chinese cancer centers in the last 10-15 years and screened 139 newly diagnosed advanced-stage nasal type ENKTCLs admitted during the same period for comparison. The non-nasal type ENKTCLs exhibited significantly higher Ki-67 expression levels compared to nasal type disease (P = 0.011). With a median follow-up duration of 75.03 months, the non-nasal group showed slightly inferior survival outcomes without statistically significant differences compared to the nasal group (median overall survival (OS): 14.57 vs. 21.53 months, 5-year OS: 28.0% vs. 38.5%, P = 0.120). Eastern Cooperative Oncology Group (ECOG) score ≥ 2 (hazard ratio (HR) = 2.18, P = 0.039) and lactic dehydrogenase (LDH) elevation (HR = 2.44, P = 0.012) were significantly correlated with worse OS in the non-nasal group. First-line gemcitabine-based chemotherapy regimens showed a trend toward slightly improved efficacy and survival outcomes compared to non-gemcitabine-based ones in the present cohort of non-nasal ENKTCLs (objective response rate: 91.7% vs. 63.6%, P = 0.144; complete response rate: 50.0% vs. 33.3%, P = 0.502; median progression-free survival: 10.43 vs. 3.40 months, P = 0.106; median OS: 25.13 vs. 9.30 months, P = 0.125), which requires further validation in larger sample size studies. Advanced-stage non-nasal type patients could achieve comparable prognosis with nasal cases after rational therapy. The modified nomogram-revised index (including age, ECOG score, and LDH) and modified international prognostic index (including age, ECOG score, LDH, and number of extranodal involvement) functioned effectively for prognostic stratification in non-nasal type ENKTCLs.


Subject(s)
Lymphoma, Extranodal NK-T-Cell , Lymphoma, T-Cell , Humans , Prognosis , Retrospective Studies , Proportional Hazards Models , Killer Cells, Natural/pathology , Lymphoma, T-Cell/pathology , Lymphoma, Extranodal NK-T-Cell/diagnosis , Lymphoma, Extranodal NK-T-Cell/drug therapy , Neoplasm Staging
18.
J Sleep Res ; 33(1): e13924, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37194421

ABSTRACT

This study aims to investigate the effects of obstructive sleep apnea on paediatric psychological and behavioural abnormalities. A total of 1086 paediatric patients with obstructive sleep apnea and 728 sample snoring controls were enrolled in the study. Patients with obstructive sleep apnea underwent bilateral tonsillectomy plus adenoidectomy or adenoidectomy alone. Repeated Autism Behaviour Checklist, Spence Children's Anxiety Scale, and Children's Depression Inventory were performed to assess the autism symptoms, anxiety level and depressive symptoms before and after surgery. The score of Autism Behaviour Checklist in preschool children with obstructive sleep apnea was higher than that in control. In school children with obstructive sleep apnea, the score of Spence Children's Anxiety Scale was also higher. School children with obstructive sleep apnea with depressive symptoms were significantly higher than that in control. The scores of Autism Behaviour Checklist, Spence Children's Anxiety Scale, and Children's Depression Inventory in the obstructive sleep apnea group after surgery were significantly lower than that before surgery. Our study showed that the score of Spence Children's Anxiety Scale and Children's Depression Inventory had a close correlation with the illness course and hypoxia duration. The Spence Children's Anxiety Scale and Children's Depression Inventory scores are also closely associated with the Autism Behaviour Checklist score. These results suggest that obstructive sleep apnea may have a significant impact on autism symptoms, anxiety levels and depressive symptoms in children. We found that the longer the duration of the obstructive sleep apnea course and hypoxia, the greater the impact on anxiety level and depressive symptoms. The suspected autism symptoms, anxiety level and depressive symptoms in children with obstructive sleep apnea were also significantly correlated. Thus, early detection and timely treatment may often reverse the psychological and behavioural abnormalities caused by obstructive sleep apnea.


Subject(s)
Sleep Apnea, Obstructive , Tonsillectomy , Child, Preschool , Humans , Child , Case-Control Studies , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/diagnosis , Adenoidectomy , Hypoxia/surgery
19.
Purinergic Signal ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467962

ABSTRACT

Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.

20.
BJOG ; 131(7): 952-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38168494

ABSTRACT

OBJECTIVE: To assess pelvic floor muscle (PFM) strength and influencing factors among healthy women at different life stages. DESIGN: Multicentre cross-sectional study. SETTING: Fourteen hospitals in China. POPULATION: A total of 5040 healthy women allocated to the following groups (with 1680 women per group): premenopausal nulliparous, premenopausal parous and postmenopausal. METHODS: The PFM strength was evaluated by vaginal manometry. Multivariate logistic regression was used to determine the influencing factors for low PFM strength. MAIN OUTCOME MEASURES: Maximum voluntary contraction pressure (MVCP). RESULTS: The median MVCP values were 36, 35 and 35 cmH2O in premenopausal nulliparous (aged 19-51 years), premenopausal parous (aged 22-61 years), and postmenopausal (aged 40-86 years) women, respectively. In the premenopausal nulliparous group, physical work (odds ratio, OR 2.05) was the risk factor for low PFM strength, which may be related to the chronic increased abdominal pressure caused by physical work. In the premenopausal parous group, the number of vaginal deliveries (OR 1.28) and diabetes (OR 2.70) were risk factors for low PFM strength, whereas sexual intercourse (<2 times per week vs. none, OR 0.55; ≥2 times per week vs. none, OR 0.56) and PFM exercise (OR 0.50) may have protective effects. In the postmenopausal group, the number of vaginal deliveries (OR 1.32) and family history of pelvic organ prolapse (POP) (OR 1.83) were risk factors for low PFM strength. CONCLUSIONS: Physical work, vaginal delivery, diabetes and a family history of POP are all risk factors for low PFM strength, whereas PFM exercises and sexual life can have a protective effect. The importance of these factors varies at different stages of a woman's life.


Subject(s)
Manometry , Muscle Strength , Pelvic Floor , Postmenopause , Premenopause , Vagina , Humans , Female , Middle Aged , Cross-Sectional Studies , Pelvic Floor/physiology , Adult , Manometry/methods , Muscle Strength/physiology , Aged , Postmenopause/physiology , Premenopause/physiology , Vagina/physiology , Risk Factors , Aged, 80 and over , Young Adult , Parity , China/epidemiology , Muscle Contraction/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL