Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.126
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858343

ABSTRACT

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Cycle Proteins , Lung Neoplasms , Receptors, G-Protein-Coupled , Transcription Factors , Bile Acids and Salts/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cholic Acids/pharmacology , Cryoelectron Microscopy , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Transcription Factors/metabolism , beta-Arrestin 1/metabolism
2.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454442

ABSTRACT

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Subject(s)
Breast Neoplasms , Cell Cycle Proteins , Humans , Female , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Prognosis , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
3.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649964

ABSTRACT

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Subject(s)
Breast Neoplasms , Mutation , Phenotype , Receptor, ErbB-2 , Adult , Aged , Female , Humans , Middle Aged , Asian People/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cluster Analysis , Cohort Studies , DNA Copy Number Variations , Exome Sequencing , Gene Expression Profiling , Malaysia/epidemiology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Transcriptome
4.
Anal Chem ; 96(11): 4479-4486, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38454359

ABSTRACT

Metal-organic gels (MOGs) are a new type of intelligent soft material, which are bridged by metal ions and organic ligands through noncovalent interactions. In this paper, we prepared highly stable P-MOGs, using the classical organic electrochemiluminescence (ECL) luminescence meso-tetra(4-carboxyphenyl)porphine as the organic ligand and Fe3+ as the metal ion. Surprisingly, P-MOGs can stably output ECL signals at a low potential. We introduced P-MOGs into the ECL resonance energy transfer strategy (ECL-RET) and constructed a quenched ECL immunosensor for the detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2-N). In the ECL-RET system, P-MOGs were used as energy donors, and Au@Cu2O@Fe3O4 were selected as energy acceptors. The ultraviolet-visible spectrum of Au@Cu2O@Fe3O4 partially overlaps with the ECL spectrum of P-MOGs, which can effectively touch off the ECL-RET behavior between the donors and receptors. Under the ideal experimental situation, the linear detection range of the SARS-CoV-2-N concentration was 10 fg/mL to 100 ng/mL, and the limit of detection was 1.5 fg/mL. This work has broad application prospects for porphyrin-MOGs in ECL sensing.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Luminescent Measurements , SARS-CoV-2 , Electrochemical Techniques , Limit of Detection , Immunoassay , COVID-19/diagnosis , Gels , Nucleocapsid Proteins
5.
Anal Chem ; 96(17): 6659-6665, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38635916

ABSTRACT

The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , Prostate-Specific Antigen , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Limit of Detection , Male , Cerium/chemistry , Luminol/chemistry
6.
Anal Chem ; 96(9): 3898-3905, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38387028

ABSTRACT

The effective applications of electrochemiluminescence (ECL) across various fields necessitate ongoing research into novel luminophores and ECL strategies. In this study, self-luminous flower-like nanocomposites (Eu-tcbpe-MOF) were prepared by coordination self-assembly using the aggregation-induced emission material 1,1,2,2-tetrakis(4-carboxyphenyl)ethylene (H4TCBPE) and Eu(III) ions as the precursors. Compared with the monomers and aggregates of H4TCBPE, Eu-tcbpe-MOF exhibits stronger ECL emission. Such enhanced electrochemiluminescence is due to coordination as the coordination-triggered electrochemiluminescence (CT-ECL) enhancement effect. In this study, a cubic-structured nanocomposite (Co9S8@Au@MoS2) was used as an efficient quencher, and a more sensitive ECL detection platform was achieved by two quenching mechanisms: resonance energy transfer and competitive consumption of coreactants. N,N-Diethylethanolamine (DBAE) was used as a coreactant, and DBAE has a faster electron transfer rate and stronger energy supply efficiency than the traditional anodoluminescent coreactant tripropylamine, which effectively improves the ECL signal intensity of Eu-tcbpe-MOF. Hence, a sandwich-type ECL immunosensor was prepared by employing a dual-quenching mechanism, utilizing Eu-tcbpe-MOF as the detection probe and Co9S8@Au@MoS2 as the quencher, achieving precise detection of carcinoembryonic antigen from 0.1 pg·mL-1 to 100 ng·mL-1 with a detection limit of 35.1 fg·mL-1.

7.
Anal Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937378

ABSTRACT

Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.

8.
Anal Chem ; 96(4): 1678-1685, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38215346

ABSTRACT

In this paper, an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of CA19-9 was constructed using ternary compound CdSSe nanoparticles as ECL emitter. The immunosensor employs Cu2S and gold-doped diindium trioxide (Au-In2O3) nanocubes as coreaction accelerators to achieve a double-amplification strategy. In general, a hexagonal maple leaf-shaped Cu2S with a large surface area was selected as the template, and the in situ growth of CdSSe on its surface was achieved using a hydrothermal method. The presence of Cu2S not only inhibited the aggregation of CdSSe nanoparticles to reduce their surface energy but also acted as an ECL cathode coreaction promoter, facilitating the generation of SO4•-. Consequently, the ECL intensity of CdSSe was significantly enhanced, and the reduction potential was significantly lower. In addition, the template method was employed to synthesize Au-In2O3 nanocubes, which offers the advantage of directly connecting materials with antibodies, resulting in a more stable construction of the immunosensor. Furthermore, In2O3 serves as a coreaction promoter, enabling the amplification strategy for ECL intensity of CdSSe, thus contributing to the enhanced sensitivity and performance of the immunosensor. The constructed immunosensor exhibited a wide linear range (100 µU mL-1 to 100 U mL-1) and a low detection limit of 80 µU mL-1, demonstrating its high potential and practical value for sensitive detection of CA19-9.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , CA-19-9 Antigen , Immunoassay/methods , Biosensing Techniques/methods , Immunologic Tests , Semiconductors , Luminescent Measurements/methods , Electrochemical Techniques/methods , Limit of Detection , Gold
9.
Anal Chem ; 96(12): 4969-4977, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38486396

ABSTRACT

Metal nanoclusters (Me NCs) have become a research hotspot in the field of electrochemiluminescence (ECL) sensing analysis. This is primarily attributed to their excellent luminescent properties and biocompatibility along with their easy synthesis and labeling characteristics. At present, the application of Me NCs in ECL mainly focuses on precious metals, whose high cost, to some extent, limits their widespread application. In this work, Cu NCs with cathode ECL emissions in persulfate (S2O82-) were prepared as signal probes using glutathione as ligands, which exhibited stable luminescence signals and high ECL efficiency. At the same time, CaMnO3 was introduced as a co-reaction promoter to increase the ECL responses of Cu NCs, thereby further expanding their application potential in biochemical analysis. Specifically, the reversible conversion of Mn3+/Mn4+ greatly promoted the generation of sulfate radicals (SO4•-), providing a guarantee for improving the luminescence signals of Cu NCs. Furthermore, a short peptide (NARKFYKGC) was introduced to enable the fixation of antibodies to specific targets, preventing the occupancy of antigen-binding sites (Fab fragments). Therefore, the sensitivity of the biosensor could be significantly enhanced by releasing additional Fab fragments. Considering the approaches discussed above, the constructed biosensor could achieve sensitive detection of CD44 over a broad range (10 fg/mL-100 ng/mL), with an ultralow detection limit of 3.55 fg/mL (S/N = 3), which had valuable implications for the application of nonprecious Me NCs in biosensing analysis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Copper/chemistry , Luminescent Measurements , Luminescence , Immunoglobulin Fab Fragments , Electrochemical Techniques , Limit of Detection , Metal Nanoparticles/chemistry
10.
Anal Chem ; 96(18): 7265-7273, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38649306

ABSTRACT

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Subject(s)
Copper , Electrochemical Techniques , Luminescent Measurements , Matrix Metalloproteinase 14 , Metal Nanoparticles , Copper/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/analysis , Electrodes , Humans
11.
Anal Chem ; 96(21): 8390-8398, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38716680

ABSTRACT

In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2-Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1. In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Gold , Luminescent Measurements , Metal Nanoparticles , Receptor, ErbB-2 , Silver , Humans , Receptor, ErbB-2/analysis , Receptor, ErbB-2/immunology , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Biosensing Techniques/methods , Gold/chemistry , Immunoassay/methods , Microfluidic Analytical Techniques/instrumentation , Limit of Detection , Cerium/chemistry
12.
Anal Chem ; 96(10): 4067-4075, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38419337

ABSTRACT

In this work, an electrochemiluminescence (ECL) quenching system using multimetal-organic frameworks (MMOFs) was proposed for the sensitive and specific detection of heart-type fatty acid-binding protein (H-FABP), a marker of acute myocardial infarction (AMI). Bimetallic MOFs containing Ru and Mn as metal centers were synthesized via a one-step hydrothermal method, yielding RuMn MOFs as the ECL emitter. The RuMn MOFs not only possessed the strong ECL performance of Ru(bpy)32+ but also maintained high porosity and original metal active sites characteristic of MOFs. Moreover, under the synergistic effect of MOFs and Ru(bpy)32+, RuMn MOFs have more efficient and stable ECL emission. The trimetal-based MOF (FePtRh MOF) was used as the ECL quencher because of the electron transfer between FePtRh MOFs and RuMn MOFs. In addition, active intramolecular electron transfer from Pt to Fe or Rh atoms also occurred in FePtRh MOFs, which could promote intermolecular electron transfer and improve electron transfer efficiency to enhance the quenching efficiency. The proposed ECL immunosensor demonstrated a wide dynamic range and a low detection limit of 0.01-100 ng mL-1 and 6.8 pg mL-1, respectively, under optimal conditions. The ECL quenching system also presented good specificity, stability, and reproducibility. Therefore, an alternative method for H-FABP detection in clinical diagnosis was provided by this study, highlighting the potential of MMOFs in advancing ECL technology.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Immunoassay/methods , Biosensing Techniques/methods , Reproducibility of Results , Fatty Acid Binding Protein 3 , Luminescent Measurements/methods , Metals , Electrochemical Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry
13.
Anal Chem ; 96(25): 10116-10120, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38858219

ABSTRACT

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.


Subject(s)
Cytokines , Electrochemical Techniques , Luminescent Measurements , Stilbenes , Thymic Stromal Lymphopoietin , Cytokines/analysis , Cytokines/metabolism , Stilbenes/chemistry , Humans , Metal-Organic Frameworks/chemistry , Biosensing Techniques , Immunoassay/methods , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Microfluidic Analytical Techniques/instrumentation
14.
Anal Chem ; 96(21): 8814-8821, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751335

ABSTRACT

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Manganese Compounds , Oxides , Receptor, ErbB-2 , Humans , Electrochemical Techniques/methods , Oxides/chemistry , Manganese Compounds/chemistry , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Hydrogels/chemistry , Photochemical Processes , Limit of Detection , Electrodes , Immunoassay/methods , Tungsten/chemistry
15.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324019

ABSTRACT

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

16.
Plant Physiol ; 192(3): 2203-2220, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36880407

ABSTRACT

Drought and cold stresses seriously affect tree growth and fruit yield during apple (Malus domestica) production, with combined stress causing injury such as shoot shriveling. However, the molecular mechanism underlying crosstalk between responses to drought and cold stress remains to be clarified. In this study, we characterized the zinc finger transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10) through comparative analysis of shoot-shriveling tolerance between tolerant and sensitive apple rootstocks. MhZAT10 responded to both drought and cold stresses. Heterologous expression of MhZAT10 in the sensitive rootstock 'G935' from domesticated apple (Malus domestica) promoted shoot-shriveling tolerance, while silencing of MhZAT10 expression in the tolerant rootstock 'SH6' of Malus honanensis reduced stress tolerance. We determined that the apple transcription factor DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) is a direct regulator activating the expression of MhZAT10 in response to drought stress. Apple plants overexpressing both MhDREB2A and MhZAT10 genes exhibited enhanced tolerance to drought and cold stress, while plants overexpressing MhDREB2A but with silenced expression of MhZAT10 showed reduced tolerance, suggesting a critical role of MhDREB2A-MhZAT10 in the crosstalk between drought and cold stress responses. We further identified drought-tolerant MhWRKY31 and cold-tolerant MhMYB88 and MhMYB124 as downstream regulatory target genes of MhZAT10. Our findings reveal a MhDREB2A-MhZAT10 module involved in crosstalk between drought and cold stress responses, which may have applications in apple rootstock breeding programs aimed at developing shoot-shriveling tolerance.


Subject(s)
Malus , Malus/metabolism , Cold-Shock Response/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Stress, Physiological/genetics , Plant Proteins/metabolism , Plant Breeding , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
17.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836563

ABSTRACT

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Subject(s)
Forests , Nitrogen , Phosphorus , Soil , Soil/chemistry , Nitrification , Taiga , China , Fires
18.
Eur J Clin Pharmacol ; 80(5): 771-780, 2024 May.
Article in English | MEDLINE | ID: mdl-38386021

ABSTRACT

BACKGROUND: The recent discovery of new therapeutic approaches to heart failure with reduced ejection fraction (HFrEF), including sodium-glucose cotransporter-2 (SGLT-2) inhibitors, as well as improved treatment of co-morbidities has provided much needed help to HFrEF. In addition, dapagliflozin, one of the SGLT-2 inhibitors, serves as a promising candidate in treating obstructive sleep apnea (OSA) of HFrEF patients due to its likely mechanism of countering the pathophysiology of OSA of HFrEF. METHODS: This 3-month multicenter, prospective, randomized controlled trial enrolled participants with left ventricular ejection fraction (LVEF) less than 40% and apnea-hypopnea index (AHI) greater than 15. Participants were randomized into two groups: the treatment group received optimized heart failure treatment and standard-dose dapagliflozin, while the control group only received optimized heart failure treatment. The primary endpoint was the difference in AHI before and after treatment between the two groups. Secondary endpoints included oxygen desaturation index (ODI), minimum oxygen saturation, longest apnea duration, inflammatory factors (CRP, IL-6), quality of life score, and LVEF. RESULTS: A total of 107 patients were included in the final analysis. AHI, LVEF and other baseline data were similar for the dapagliflozin and control groups. After 12 weeks of dapagliflozin treatment, the dapagliflozin group showed significant improvements in sleep parameters including AHI, HI, longest pause time, ODI, time spent with SpO2 < 90%, and average SpO2. Meanwhile, the control group showed no significant changes in sleep parameters, but did demonstrate significant improvements in left ventricular end-diastolic diameter, LVEF, and NT-proBNP levels at 12 weeks. In the experimental group, BMI was significantly reduced, and there were improvements in ESS score, MLHFQ score, and EQ-5D-3L score, as well as significant reductions in CRP and IL-6 levels, while the CRP and IL-6 levels were not improved in the control group. The decrease in LVEF was more significant in the experimental group compared to the control group. There were no significant differences in the magnitude of the decreases between the two groups. CONCLUSIONS: Dapagliflozin may be an effective treatment for heart failure complicated with OSA, and could be considered as a potential new treatment for OSA. (Trial registration  www.chictr.org.cn , ChiCTR2100049834. Registered 10 August 2021).


Subject(s)
Benzhydryl Compounds , Glucosides , Heart Failure , Sleep Apnea, Obstructive , Humans , Stroke Volume/physiology , Heart Failure/drug therapy , Prospective Studies , Quality of Life , Interleukin-6 , Ventricular Function, Left , Sleep Apnea, Obstructive/drug therapy , Sleep Apnea, Obstructive/complications
19.
Br J Anaesth ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38839471

ABSTRACT

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).

20.
Hepatobiliary Pancreat Dis Int ; 23(1): 77-82, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37087368

ABSTRACT

BACKGROUND: Early systemic anticoagulation (SAC) is a common practice in acute necrotizing pancreatitis (ANP), and its impact on in-hospital clinical outcomes had been assessed. However, whether it affects long-term outcomes is unknown. This study aimed to evaluate the effect of SAC on 90-day readmission and other long-term outcomes in ANP patients. METHODS: During January 2013 and December 2018, ANP patients admitted within 7 days from the onset of abdominal pain were screened. The primary outcome was 90-day readmission after discharge. Cox proportional-hazards regression model and mediation analysis were used to define the relationship between early SAC and 90-day readmission. RESULTS: A total of 241 ANP patients were enrolled, of whom 143 received early SAC during their hospitalization and 98 did not. Patients who received early SAC experienced a lower incidence of splanchnic venous thrombosis (SVT) [risk ratio (RR) = 0.40, 95% CI: 0.26-0.60, P < 0.01] and lower 90-day readmission with an RR of 0.61 (95% CI: 0.41-0.91, P = 0.02) than those who did not. For the quality of life, patients who received early SAC had a significantly higher score in the subscale of vitality (P = 0.03) while the other subscales were all comparable between the two groups. Multivariable Cox regression model showed that early SAC was an independent protective factor for 90-day readmission after adjusting for potential confounders with a hazard ratio of 0.57 (95% CI: 0.34-0.96, P = 0.04). Mediation analysis showed that SVT mediated 37.0% of the early SAC-90-day readmission causality. CONCLUSIONS: The application of early SAC may reduce the risk of 90-day readmission in the survivors of ANP patients, and reduced SVT incidence might be the primary contributor.


Subject(s)
Pancreatitis, Acute Necrotizing , Venous Thrombosis , Humans , Patient Readmission , Retrospective Studies , Pancreatitis, Acute Necrotizing/diagnosis , Pancreatitis, Acute Necrotizing/drug therapy , Quality of Life , Risk Factors , Venous Thrombosis/drug therapy , Anticoagulants/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL