Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Gastroenterol Hepatol ; 39(6): 1134-1144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615196

ABSTRACT

BACKGROUND AND AIM: Small heterodimer partner (SHP, encoded by NR0B2) plays an important role in maintaining bile acid homeostasis. The loss of the hepatic farnesoid X receptor (FXR)/SHP signal can cause severe cholestatic liver injury (CLI). FXR and SHP have overlapping and nonoverlapping functions in bile acid homeostasis. However, the key role played by SHP in CLI is unclear. METHODS: In this study, an alpha-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model was established. The effect of SHP knockout (SHP-KO) on liver and ileal pathology was evaluated. 16S rRNA gene sequencing analysis combined with untargeted metabolomics was applied to reveal the involvement of SHP in the pathogenesis of CLI. RESULTS: The results showed that ANIT (75 mg/kg) induced cholestasis in WT mice. No significant morphological changes were found in the liver and ileal tissue of SHP-KO mice. However, the serum metabolism and intestinal flora characteristics were significantly changed. Moreover, compared with the WT + ANIT group, the serum levels of ALT and AST in the SHP-KO + ANIT group were significantly increased, and punctate necrosis in the liver tissue was more obvious. The ileum villi showed obvious shedding, thinning, and shortening. In addition, SHP-KO-associated differential intestinal flora and differential biomarkers were significantly associated. CONCLUSION: In this study, we elucidated the serum metabolic characteristics and intestinal flora changes related to the aggravation of CLI in SHP-KO mice induced by ANIT.


Subject(s)
1-Naphthylisothiocyanate , Cholestasis , Disease Models, Animal , Disease Progression , Liver , Mice, Knockout , Receptors, Cytoplasmic and Nuclear , Animals , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cholestasis/metabolism , Cholestasis/pathology , Liver/pathology , Liver/metabolism , 1-Naphthylisothiocyanate/toxicity , Male , Ileum/pathology , Ileum/metabolism , Gastrointestinal Microbiome , Mice , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
2.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687125

ABSTRACT

CAG is a burdensome and progressive disease. Numerous studies have shown the effectiveness of RUT in digestive system diseases. The therapeutic effects of RUT on MNNG-induced CAG and the potential mechanisms were probed. MNNG administration was employed to establish a CAG model. The HE and ELISA methods were applied to detect the treatment effects. WB, qRT-PCR, immunohistochemistry, TUNEL, and GES-1 cell flow cytometry approaches were employed to probe the mechanisms. The CAG model was successfully established. The ELISA and HE staining data showed that the RUT treatment effects on CAG rats were reflected by the amelioration of histological damage. The qRT-PCR and WB analyses indicated that the protective effect of RUT is related to the upregulation of the SHH pathway and downregulation of the downstream of apoptosis to improve gastric cellular survival. Our data suggest that RUT induces a gastroprotective effect by upregulating the SHH signaling pathway and stimulating anti-apoptosis downstream.


Subject(s)
Gastritis, Atrophic , Hedgehog Proteins , Mice , Rats , Animals , Gastritis, Atrophic/chemically induced , Gastritis, Atrophic/drug therapy , Methylnitronitrosoguanidine , Quinazolines , Nitrosoguanidines , Signal Transduction
3.
J Clin Pharm Ther ; 47(8): 1159-1172, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35712904

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Tanreqing injection (TRQ) is a traditional Chinese medicine injection. The goal of this study was to assess the clinical efficacy and safety of TRQ injection in combination with azithromycin or ceftriaxone, as well as azithromycin or ceftriaxone alone, in treating Streptococcus pneumoniae pneumonia (SPP). METHODS: The randomized controlled trial (RCT) of TRQ injection combined with antibiotics versus antibiotics alone in the treatment of SPP was retrieved from Chinese and English databases (the control group was treated with antibiotics alone, while the experimental group received TRQ injection combined with antibiotics). The retrieval period was from the database's inception through February 2022. The data was extracted using the Cochrane Collaboration Network Quality Evaluation Standards, the methodological quality of the included literature was assessed, and the outcome indicators were calculated using RevMan5.4.1 software. RESULTS AND DISCUSSION: A total of 25 RCTs were collected, including 2057 patients. TRQ injection combined with antibiotics significantly improved clinical efficacy and reduced defervescence time, lung rale disappearance time, cough disappearance time, disappearance time of chest pain, and average hospitalization time when compared to control group, according to meta-analysis results (p < 0.05). WHAT IS NEW AND CONCLUSION: In the treatment of SPP, TRQ injection combination with antibiotics can significantly improve the total effect rate when compared to standard western medicine. Due to the low quality of the randomized controlled trials included in this investigation, more high-quality, multi-center, large-sample, prospective, randomized, double-blind clinical studies are needed to confirm the aforementioned conclusions.


Subject(s)
Drugs, Chinese Herbal , Pneumonia , Anti-Bacterial Agents/adverse effects , Azithromycin/therapeutic use , Ceftriaxone/adverse effects , Drugs, Chinese Herbal/adverse effects , Humans , Pneumonia/drug therapy , Randomized Controlled Trials as Topic , Streptococcus pneumoniae
4.
Saudi Pharm J ; 30(6): 764-778, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35812150

ABSTRACT

Aims: The potential signaling pathways and core genes in ulcerative colitis (UC) were investigated in this study. Furthermore, potential mechanisms of BBR in treating UC were also explored. Methods: Expression profiling by array of UC patients were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were determined with the differential analysis. The biological functions of DEGs were analyzed through the Database for Annotation, Visualization and Integrated Discovery (DAVID). The Gene Set Enrichment Analysis (GSEA) was applied to analyze the expression differences between two different phenotype sample sets. Dextran sulfate sodium (DSS) was applied to establish UC model of mice and lipopolysaccharide (LPS) was utilized to induce inflammatory damage of NCM460 cells. Therapeutic effects of berberine (BBR) on disease performance, pathologic changes and serum supernatant indices were analyzed in vivo. To further investigate the potential mechanisms of BBR in treating UC, the expression of genes and proteins in vivo and in vitro were examined by RT-qPCR, immunohistochemical staining and western blotting. Results: Immune-inflammatory genes were identified and up-regulated significantly in UC patients. In addition, IFN-γ signaling pathway and its core genes were significantly up-regulated in the phenotype of UC. All disease performance and the pathologic changes of UC in mice were evidently ameliorated by BBR treatment. The pro-inflammatory cytokines of serum, including CXCL9, CXCL1, IL-17 and TNF-α, in UC mice were significantly reduced by treatment of BBR. In terms of mechanisms of BBR in treating UC, the pro-inflammatory and immune-related genes, encoding IFN-γ, IRF8, NF-κB and TNF-α decreased significantly in UC mice followed by BBR treatment. Meanwhile, the expression of IFN-γ and its initiated targets, including IRF8, Ifit1, Ifit3, IRF1, were suppressed significantly by BBR treatment in vivo. The blocking of IFN-γ in vitro led to the silence of IFN-γ signaling pathway after exposure to BBR. Furthermore, the blocking of IFN-γ in vitro led to the silence of IFN-γ signaling pathway after exposure to BBR. Conclusion: BBR holds anti-inflammatory activity and can treat UC effectively. The anti-inflammatory property of BBR is tightly related to the suppression of IFN-γ signaling pathway, which is crucial in immune-inflammatory responses of the colon mucosa.

5.
Pharmacol Res ; 165: 105444, 2021 03.
Article in English | MEDLINE | ID: mdl-33493657

ABSTRACT

With the development of high-throughput screening and bioinformatics technology, natural products with a range of pharmacological targets in multiple diseases have become important sources of new drug discovery. These compounds are derived from various plants, including the dried root of Scutellaria baicalensis Georgi, which is often used as a traditional Chinese herb named Huangqin, a popular medication used for thousands of years in China. Many studies have shown that baicalin, an extract from Scutellaria baicalensis Georgi, exerts various protective effects on liver and gut diseases. Baicalin plays a therapeutic role mainly by mediating downstream apoptosis and immune response pathways induced by upstream oxidative stress and inflammation. During oxidative stress regulation, PI3K/Akt/NRF2, Keap-1, NF-κB and HO-1 are key factors associated with the healing effects of baicalin on NAFLD/NASH, ulcerative colitis and cholestasis. In the inflammatory response, IL-6, IL-1ß, TNF-α, MIP-2 and MIP-1α are involved in the alleviation of NAFLD/NASH, cholestasis and liver fibrosis by baicalin, as are TGF-ß1/Smads, STAT3 and NF-κB. Regarding the apoptosis pathway, Bax, Bcl-2, Caspase-3 and Caspase-9 are key factors related to the suppression of hepatocellular carcinoma and attenuation of liver injury and colorectal cancer. In addition to immune regulation, PD-1/PDL-1 and TLR4-NF-κB are correlated with the alleviation of hepatocellular carcinoma, ulcerative colitis and colorectal cancer by baicalin. Moreover, baicalin regulates intestinal flora by promoting the production of SCFAs. Furthermore, BA is involved in the interactions of the liver-gut axis by regulating TGR5, FXR, bile acids and the microbiota. In general, a comprehensive analysis of this natural compound was conducted to determine the mechanism by which it regulates bile acid metabolism, the intestinal flora and related signaling pathways, providing new insights into the pharmacological effects of baicalin. The mechanism linking the liver and gut systems needs to be elucidated to draw attention to its great clinical importance.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Flavonoids/pharmacology , Gastrointestinal Tract/drug effects , Inflammation Mediators/antagonists & inhibitors , Liver/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Flavonoids/therapeutic use , Gastrointestinal Tract/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Liver/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
6.
Phytother Res ; 35(1): 122-137, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32780543

ABSTRACT

This study aimed to evaluate the efficacy and safety of Tanreqing injection (TRQi) in the treatment of pulmonary infection after chemotherapy in patients with lung cancer. Cochrane Library, PubMed, Web of Science, EMbase, CNKI, VMIS, Wan-Fang, and CBM databases were comprehensively searched from established to March 2020. randomized controlled trials (RCTs) of TRQi were selected. The evaluation manual of Cochrane RCT was used to evaluate the methodological quality of all included studies, Stata 13.0 and Review Manager 5.3 software was used for meta-analysis. This study is registered with PROSPERO (CRD42020175533). Eighteen RCTs with a total of 1,438 patients were met the inclusion criteria. Meta-analysis showed that compared with antibiotics alone, TRQi plus antibiotics could significantly improve the clinical efficacy, defervescence time, lung rale disappearance time, cough disappearance time, and average hospitalization time, reduce white blood cell, C-reactive protein, and procalcitonin levels, and adverse reactions. However, due to the small sample size and low quality of the study, more rigorous and more RCTs are needed for further verification. In conclusion, this study provides useful evidence for the efficacy and safety of TRQi combined with antibiotics in the treatment of pulmonary infection after chemotherapy with lung cancer.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug-Related Side Effects and Adverse Reactions/etiology , Drugs, Chinese Herbal/therapeutic use , Infections/etiology , Lung Neoplasms/complications , Anti-Bacterial Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Humans , Injections , Lung Neoplasms/drug therapy
7.
J Cell Mol Med ; 24(7): 4036-4050, 2020 04.
Article in English | MEDLINE | ID: mdl-32073745

ABSTRACT

Higenamine (HG) is a natural benzylisoquinoline alkaloid isolated from Aconitum with positive inotropic and chronotropic effects. This study aimed to investigate the possible cardioprotective effects of HG combined with [6]-gingerol (HG/[6]-GR) against DOX-induced chronic heart failure (CHF) by comprehensive approaches. DOX-induced cardiotoxicity model in rats and H9c2 cells was established. Therapeutic effects of HG/[6]-GR on haemodynamics, serum indices and histopathology of cardiac tissue were analysed. Cell mitochondrial energy phenotype and cell mitochondrial fuel flex were measured by a Seahorse XFp analyser. Moreover, UHPLC-Q-TOF/MS was performed to explore the potential metabolites affecting the therapeutic effects and pathological process of CHF. To further investigate the potential mechanism of HG/[6]-GR, mRNA and protein expression levels of RAAS and LKB1/AMPK/Sirt1-related pathways were detected. The present data demonstrated that the therapeutic effects of HG/[6]-GR combination on CHF were presented in ameliorating heart function, down-regulation serum indices and alleviating histological damage of heart tissue. Besides, HG/[6]-GR has an effect on increasing cell viability of H9c2 cells, ameliorating DOX-induced mitochondrial dysfunction and elevating mitochondrial OCR and ECAR value. Metabolomics analyses showed that the therapeutic effect of HG/[6]-GR combination is mainly associated with the regulation of fatty acid metabolites and energy metabolism pathways. Furthermore, HG/[6]-GR has an effect on down-regulating RAAS pathway-related molecules and up-regulating LKB1/AMPKα/Sirt1-related pathway. The present work demonstrates that HG/[6]-GR prevented DOX-induced cardiotoxicity via the cardiotonic effect and promoting myocardial energy metabolism through the LKB1/AMPKα/Sirt1 signalling pathway, which promotes mitochondrial energy metabolism and protects against CHF.


Subject(s)
Aconitum/chemistry , Alkaloids/pharmacology , Catechols/pharmacology , Fatty Alcohols/pharmacology , Heart Failure/drug therapy , Mitochondrial Diseases/drug therapy , Tetrahydroisoquinolines/pharmacology , Alkaloids/chemistry , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/genetics , Cardiotoxicity/pathology , Chronic Disease/prevention & control , Disease Models, Animal , Doxorubicin/adverse effects , Energy Metabolism/drug effects , Heart/drug effects , Heart/physiopathology , Heart Failure/chemically induced , Heart Failure/genetics , Heart Failure/pathology , Male , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats
8.
Phytother Res ; 34(6): 1291-1309, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32026542

ABSTRACT

Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.


Subject(s)
Biological Products/therapeutic use , Cholestasis/drug therapy , Cholestasis/prevention & control , Liver Diseases/drug therapy , Liver Diseases/prevention & control , Animals , Humans
9.
Mol Genet Genomics ; 294(5): 1159-1171, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31053932

ABSTRACT

Li-Ru-Kang (LRK) has been commonly used in the treatment of hyperplasia of mammary gland (HMG) as a cipher prescription and achieved obvious therapeutic effects. However, the bioactive compounds and underlying pharmacological mechanisms remain unclear. This study aims to decipher the bioactive compounds and potential action mechanisms of LRK in the treatment of HMG using an integrated pharmacology approach. The ingredients of LRK and the corresponding drug targets were retrieved through drug target databases and were used to construct the "compound-target-disease" network and function-pathway network. Ultimately, 89 compounds and 2150 drug targets were collected. Gene ontology enrichment analysis revealed that mammary gland alveolus development and mammary gland lobule development were the key biological processes and were regulated simultaneously by three direct targets, including androgen receptor (AR), estrogen receptor (ER) and cyclin-D1. Moreover, 14 compounds of LRK were directly involved in the regulation of the three aforementioned targets. KEGG pathway enrichment analysis found that five signaling pathways and seven direct targets were closely related with HMG treatment by LRK. The results of animal experiments showed that LRK significantly improved the histopathological status of HMG in rats. Additionally, LRK markedly regulated the protein expressions of AR, cyclin-D1, MMP2, MMP3 and MMP9. But interestingly, the effect of LRK on ER was not obvious. This study demonstrated that LRK exerted its therapeutic efficacy based on multi-components, multi-targets and multi-pathways. This research confirms the advantages of network pharmacology analyses and the necessity for experimental verification.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hyperplasia/drug therapy , Mammary Glands, Animal/drug effects , Phytochemicals/pharmacology , Animals , Female , Medicine, Chinese Traditional/methods , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
10.
Phytother Res ; 32(5): 757-768, 2018 May.
Article in English | MEDLINE | ID: mdl-29235181

ABSTRACT

Fuzheng Huayu (FZHY) capsule, a formulated traditional Chinese medicine product with 6 Chinese herbs, is widely used for HBV-related cirrhosis as an adjuvant treatment. However, the efficacy of FZHY capsule for HBV-induced cirrhosis did not be comprehensively proved by systematic analysis. Our current analysis was aimed to assess the efficacy and safety of FZHY capsule by an evidence-based method. Databases, including China National Knowledge Infrastructure, Wangfang, VIP medicine information system, Pubmed, Embase, and Cochrane Library, were searched, and the randomized controlled trials of FZHY capsule were used for the treatment of HBV-associated liver cirrhosis. Meta-analysis was performed by Review Manager 5.3. The efficacy rate, alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), albumin (ALB), Procollagen III protein (PIIIP), hyaluronic acid (HA), laminin (LN), Collagen C Type IV (IV-C), Child-Pugh score, portal vein diameter, spleen thickness, HBeAg negative conversion rate, and HBV-DNA negative conversion rate were systematically assessed. The Cochrane Risk of Bias tool was used to evaluate the methodological quality of eligible studies. Nineteen studies with 1,769 patients were included in the meta-analysis. Compared to conventional treatment, FZHY capsule was effective by increasing the efficacy. FZHY capsule was more efficient in improving ALT, AST, TBIL, PIIIP, HA, LN, IV-C, Child-Pugh grading score, portal vein diameter, spleen thickness, and HBV-DNA negative conversion rate with no serious adverse reactions. Nevertheless, a variety of well-designed randomized controlled trials are needed to confirm these findings since small samples were applied in the previous studies.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Hepatitis B/complications , Hepatitis B/drug therapy , Liver Cirrhosis/drug therapy , Liver Cirrhosis/virology , Capsules , China , Combined Modality Therapy , Drugs, Chinese Herbal/administration & dosage , Hepatitis B virus/physiology , Humans , Treatment Outcome
11.
Phytother Res ; 29(11): 1768-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26269092

ABSTRACT

Cholestasis causes hepatic accumulation of bile acids leading to liver injury, fibrosis and liver failure. Paeoniflorin, the major active compound isolated from the roots of Paeonia lactiflora pall and Paeonia veitchii Lynch, is extensively used for liver diseases treatment in China. However, the mechanism of paeoniflorin's hepatoprotective effect on cholestasis has not been investigated yet. In this study, we administered paeoniflorin to rats for 3 days prior to alpha-naphthylisothiocyanate (ANIT) administration for once, then went on administering paeoniflorin to rats for 3 days. The data demonstrated that paeoniflorin significantly prevented ANIT-induced change in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphates (ALP), serum total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA) and gamma-glutamyl transpeptidase (γ-GT). Histology examination revealed that paeoniflorin treatment rats relieved more liver injury and bile duct proliferation than ANIT-administered rats. Moreover, our data indicated that paeoniflorin could restore glutathione (GSH) and its related synthase glutamate-cysteine ligase catalytic subunit (GCLc) and glutamate-cysteine ligase modifier subunit (GCLm) in ANIT-treated group. In addition, the RNA and protein expression of Akt and nuclear factor-E2-related factor-2 (Nrf2) were also activated by paeoniflorin in ANIT-induced rats. These findings indicated that paeoniflorin protected ANIT-induced cholestasis and increased GSH synthesis by activating Nrf2 through PI3K/Akt-dependent pathway. Therefore, paeoniflorin might be a potential therapeutic agent for cholestasis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cholestasis/drug therapy , Glucosides/pharmacology , Monoterpenes/pharmacology , 1-Naphthylisothiocyanate , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Benzoates/pharmacology , Bile Acids and Salts/metabolism , Bilirubin/blood , Bridged-Ring Compounds/pharmacology , China , Glutamate-Cysteine Ligase , Glutathione/metabolism , Liver/drug effects , Liver Function Tests , Male , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , gamma-Glutamyltransferase/blood
12.
J Ethnopharmacol ; 319(Pt 3): 117340, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879508

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY: The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS: In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS: DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS: These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.


Subject(s)
Evodia , Stomach Ulcer , Animals , Rats , Molecular Docking Simulation , Network Pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Anti-Inflammatory Agents, Non-Steroidal , Ethanol/toxicity
13.
Drug Des Devel Ther ; 18: 1651-1672, 2024.
Article in English | MEDLINE | ID: mdl-38774485

ABSTRACT

Background: The Zuojin Pill (ZJP) is widely used for treating chronic atrophic gastritis (CAG) in clinical practice, effectively ameliorating symptoms such as vomiting, pain, and abdominal distension in patients. However, the underlying mechanisms of ZJP in treating CAG has not been fully elucidated. Purpose: This study aimed to clarify the characteristic function of ZJP in the treatment of CAG and its potential mechanism. Methods: The CAG model was established by alternant administrations of ammonia solution and sodium deoxycholate, as well as an irregular diet. Therapeutic effects of ZJP on body weight, serum biochemical indexes and general condition were analyzed. HE staining and AB-PAS staining were analyzed to characterize the mucosal injury and the thickness of gastric mucosa. Furthermore, network pharmacology and molecular docking were used to predict the regulatory mechanism and main active components of ZJP in CAG treatment. RT-PCR, immunohistochemistry, immunofluorescence and Western blotting were used to measure the expression levels of apoptosis-related proteins, gastric mucosal barrier-associated proteins and PI3K/Akt signaling pathway proteins. Results: The results demonstrated that ZJP significantly improved the general state of CAG rats, alleviated weight loss and gastric histological damage and reduced the serum biochemical indicators. Network pharmacology and molecular docking found that ZJP in treating CAG by inhibiting inflammation, suppressing apoptosis, and protecting the gastric mucosal barrier via the PI3K/Akt signaling pathway. Further experiments confirmed that ZJP obviously modulated the expression of key proteins involved in gastric mucosal cell apoptosis, such as Bax, Bad, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, Cytochrome C, Bcl-2, and Bcl-xl. Moreover, ZJP significantly reversed the protein expression of Occludin, ZO-1, Claudin-4 and E-cadherin. Conclusion: Our study revealed that ZJP treats CAG by inhibiting the PI3K/Akt signaling pathway. This research provided a scientific basis for the rational use of ZJP in clinical practice.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Gastric Mucosa , Gastritis, Atrophic , Molecular Docking Simulation , Rats, Sprague-Dawley , Animals , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/pathology , Gastritis, Atrophic/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Male , Chronic Disease , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Network Pharmacology , Proto-Oncogene Proteins c-akt/metabolism
14.
Front Immunol ; 14: 1164202, 2023.
Article in English | MEDLINE | ID: mdl-37457696

ABSTRACT

Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease characterized by persistent cholestasis, interlobular bile duct damage, portal inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and animal studies have made a good progress in bile acid metabolism, intestinal flora disorder inflammatory response, bile duct cell damage, and autoimmune response mechanisms. However, the pathogenesis of PBC has not been clearly elucidated. We focus on the pathological mechanism and new drug research and development of PBC in clinical and laboratory in the recent 20 years, to discuss the latest understanding of the pathological mechanism, treatment options, and drug discovery of PBC. Current clinical treatment mode and symptomatic drug support obviously cannot meet the urgent demand of patients with PBC, especially for the patients who do not respond to the current treatment drugs. New treatment methods are urgently needed. Drug candidates targeting reported targets or signals of PBC are emerging, albeit with some success and some failure. Single-target drugs cannot achieve ideal clinical efficacy. Multitarget drugs are the trend of future research and development of PBC drugs.


Subject(s)
Biological Products , Cholestasis , Liver Cirrhosis, Biliary , Animals , Liver Cirrhosis, Biliary/drug therapy , Biological Products/therapeutic use , Cholestasis/drug therapy , Bile Ducts , Bile Ducts, Intrahepatic
15.
Front Pharmacol ; 14: 1197847, 2023.
Article in English | MEDLINE | ID: mdl-37284301

ABSTRACT

Background: Farnesoid X receptor (FXR) is a key metabolic target of bile acids (BAs) and is also a target for drugs against several liver diseases. However, the contribution of FXR in the pathogenesis of cholestasis is still not fully understood. The purpose of this study is to provide a comprehensive insight into the metabolic properties of FXR-involved cholestasis in mice. Materials and methods: In this study, an alpha-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model and FXR-/- mice were established to investigate the effect of FXR on cholestasis. The effect of FXR on liver and ileal pathology was evaluated. Simultaneously, Untargeted metabolomics combined with 16s rRNA gene sequencing analysis was applied to reveal the involvement of FXR in the pathogenesis of cholestasis. Results: The results showed that ANIT (75 mg/kg) induced marked cholestasis in WT and FXR -/- mice. It is noteworthy that FXR-/- mice developed spontaneous cholestasis. Compared with WT mice, significant liver and ileal tissue damage were found. In addition, 16s rRNA gene sequencing analysis revealed gut microbiota dysbiosis in FXR-/- mice and ANIT-induced cholestasis mice. Differential biomarkers associated with the pathogenesis of cholestasis caused by FXR knockout were screened using untargeted metabolomics. Notably, Lactobacillus_ johnsonii_FI9785 has a high correlation with the differential biomarkers associated with the pathogenesis and progression of cholestasis caused by FXR knockout. Conclusion: Our results implied that the disorder of the intestinal flora caused by FXR knockout can also interfere with the metabolism. This study provides novel insights into the FXR-related mechanisms of cholestasis.

16.
Article in English | MEDLINE | ID: mdl-37957903

ABSTRACT

BACKGROUND AND PURPOSE: Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS: Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS: A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION: QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.

17.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765116

ABSTRACT

Chronic gastritis (CG) is a common clinical digestive system disease, which is not easyily cured and is prone to recurrence. Traditional Chinese medicine (TCM) plays a significant role in the treatment of CG and has attracted increasing attention for clinical applications. In recent years, a large number of reports have shown that TCM has good therapeutic effect on CG. The aim of this paper is to investigate the pharmacological activities and mechanism of action of TCM in the treatment of CAG. Therefore, by searching the databases of Pubmed, China National Knowledge Infrastructure, Wanfang, and Baidu academic databases, this paper has summarized the molecular mechanisms of TCM in improving CG. The results show that the improvement of GC by TCM is closely related to a variety of molecular mechanisms, including the inhibition of Helicobacter pylori (Hp) infection, alleviation of oxidative stress, improvement of gastric function, repair of gastric mucosa, inhibition of inflammatory response, and apoptosis. More importantly, IRF8-IFN-γ, IL-4-STAT6, Hedgehog, pERK1/2, MAPK, PI3K-Akt, NF-κB, TNFR-c-Src-ERK1/2-c-Fos, Nrf2/HO-1, and HIF-1α/VEGF signaling pathways are considered as important molecular targets for TCM in the treatment of GC. These important findings will provide a direction and a basis for further exploring the pathogenesis of GC and tapping the potential of TCM in clinical treatment. This review also puts forward a bright prospect for future research of TCM in the treatment of CG.

18.
Front Pharmacol ; 14: 1308995, 2023.
Article in English | MEDLINE | ID: mdl-38259271

ABSTRACT

Background: Gastric ulcers (GUs) are prevalent digestive disorders worldwide. Wuzhuyu Decoction (WZYT) is a traditional Chinese medicine that has been employed for centuries to alleviate digestive ailments like indigestion and vomiting. This study aims to explore the potential effects and underlying mechanisms of WZYT on alcohol induced gastric ulcer treatment. Methods: We employed macroscopic assessment to evaluate the gastric ulcer index (UI), while the enzyme-linked immunosorbent assay (ELISA) was utilized for detecting biochemical indicators. Pathological tissue analysis involved hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining to assess gastric tissue damage. Additionally, the integration of network analysis and metabolomics facilitated the prediction of potential targets. Validation was conducted using Western blotting. Results: The research revealed that WZYT treatment significantly reduced the gastric ulcer index (UI) and regulation of alcohol-induced biochemical indicators levels. Additionally, improvements were observed in pathological tissue. Network analysis results indicated that 62 compounds contained in WZYT modulate alcohol-induced gastric ulcers by regulating 183 genes. The serum metabolomics indicated significant changes in the content of 19 metabolites after WZYT treatment. Two pivotal targets, heme oxygenase 1 (HMOX1) and albumin (ALB), are believed to assume a significant role in the treatment of gastric ulcers by the construction of "compounds-target-metabolite" networks. Western blot analysis confirmed that WZYT has the capacity to elevate the expression of HMOX1 and ALB targets. Conclusion: The integration of network analysis and metabolomics provides a scientific basis to propel the clinical use of WZYT for GUs. Our study provides a theoretical basis for the use of Wuzhuyu decoction in the treatment of gastric ulcers.

19.
Front Pharmacol ; 14: 1173542, 2023.
Article in English | MEDLINE | ID: mdl-37324459

ABSTRACT

Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.

20.
Drug Des Devel Ther ; 17: 3269-3280, 2023.
Article in English | MEDLINE | ID: mdl-37954485

ABSTRACT

Objective: Chronic non-atrophic gastritis (CNAG) is a common clinical gastrointestinal disease with a long and recurrent course. In China, Wuzhuyu decoction (WZYD) has been used for centuries to treat gastrointestinal disorders. To unravel the efficacy and mechanism of WZYD for CNAG, a clinical study was conducted. And metabolomics was used to explore the mechanism of WZYD for CNAG patients. Methods: Twenty patients in total were recruited in this study (Nos. ChiCTR2200062296) and the protocol was approved by the Ethics Committee (Approval number: KY-2022-2-6-1) and complied with the Declaration of Helsinki. The formula granule of WZYD were assessed by UHPLC-QQQ-TOF to discern the main potential active compounds. The endoscopy evaluation and histopathological changes were detected as effective indicators. Serum samples from patients were used for metabolomics. Inflammatory factors in patients' serum were determined by ELISA. Metabolomics revealed a series of differential metabolites and signaling pathways. Results: WZYD was capable to prevent CNAG by ameliorating score of endoscopy evaluation including erosion, hemorrhage, as well as chronic inflammation and active chronic inflammation score after treatment were decreased. The results indicated that 10 core metabolic components were associated with the treatment of WZYD. Moreover, these metabolic components proved that pyrimidine metabolism and thiamine metabolism were critically responsible for CNAG. In addition, WZYD treatment effectively reduced serum levels of TNF-α, IL-10, and COX-2. Conclusion: Altogether, WZYD can effectively alleviate CNAG by inhibiting inflammation and regulating related metabolic processes, which might be the molecular mechanism of WZYD treatment of CNAG. More studies are warranted to be conducted in this area. Trial Registration: ChiCTR, ChiCTR2200062296. Registered 1 August 2022, https://www.chictr.org.cn/com/25/showprojen.aspx?proj=174027.


Subject(s)
Gastritis , Metabolomics , Humans , Inflammation , China , Cyclooxygenase 2 , Gastritis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL