Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Neuromodulation ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37115122

ABSTRACT

OBJECTIVE: Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS: A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS: From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS: slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.

2.
Ther Adv Neurol Disord ; 16: 17562864231202064, 2023.
Article in English | MEDLINE | ID: mdl-37822361

ABSTRACT

Background: Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective: We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods: By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results: The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion: Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL