Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Nutr ; 9: 966705, 2022.
Article in English | MEDLINE | ID: mdl-36185682

ABSTRACT

Chickpea (Cicer arietinum L.) is a well-known legume widely used as traditional medicine. This study aimed to characterize the structure and evaluate the immunomodulatory activity of one glycoprotein [crude chickpea glycoprotein-1 (CAG-1)] isolated from chickpea. CAG-1 was extracted with hot alkaline water and purified with DEAE-Sepharose Fast Flow and Superdex-200 column chromatography. CAG-1, with a molecular weight of 8,106 Da, contained 57.12% polysaccharide and 35.41% protein. The polysaccharide part was mainly composed of glucose (Glc). The protein part was connected mainly by aspartic (Asp) and glutamic (Glu). The results of nuclear magnetic resonance (NMR) analysis indicated the presence of α-d-Glcp-(1 → 4)-α-d-Glcp-(1 → 4)-α-d-Glcp-(1 → . In addition, the sugar chains of the glycoprotein were not hydrolyzed under alkaline conditions, suggesting that the glycoprotein was N-glycosidic; thus, the sugar chain was linked to the protein chain by Asp. An immunological study showed that CAG-1 stimulated the production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein 1 (MCP-1) in RAW 264.7 macrophages in a dose-dependent manner.

2.
Foods ; 10(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34681416

ABSTRACT

Coarse cereals are rich in flavonoids, which are bioactive substances with a wide range of functions. Biotransformation is considered an emerging approach to methylate flavonoids, displaying prominent regio- and stereoselectivity. In the current study, liquiritigenin, naringenin, and hesperidin flavonoids were biotransformed using O-methyltransferases that were heterologously expressed in Saccharomyces cerevisiae BJ5464-NpgA. Nuclear magnetic resonance (NMR) spectroscopy was used together with high-resolution mass spectroscopy analysis to determine the structures of the resulting methylated transformants, and their antimicrobial and antiproliferation activities were also characterized. Among the five methylated flavonoids obtained, 7-methoxy-liquiritigenin had the strongest inhibitory effect on Candida albicans SC5314 (C. albicans SC5314), Staphylococcus aureus ATCC6538 (S. aureus ATCC6538), and Escherichia coli ATCC25922 (E. coli ATCC25922), which increased 7.65-, 1.49-, and 0.54-fold in comparison to the values of their unmethylated counterparts at 200, 250, and 400 µM, respectively. The results suggest that 3'-methoxyhesperetin showed the best antiproliferative activity against MCF-7 cells with IC50 values of 10.45 ± 0.45 µM, which was an increase of more than 14.35-fold compared to that of hesperetin. These results indicate that methylation enhances the antimicrobial activities and antiproliferative effects of flavonoids. The current study provides an experimental basis for further research on flavonoids as well as flavonoid-containing crops in the development of antimicrobial and anti-breast cancer drugs in addition to supplementary and health foods. The biotransformation method is ideal, as it represents a means for the sustainable production of bioactive flavonoids.

3.
Front Nutr ; 8: 774203, 2021.
Article in English | MEDLINE | ID: mdl-34926551

ABSTRACT

Dietary intervention with plant protein is one of the main methods that is used to lessen the symptoms of malnutrition. Supplementary soy protein to undernourished weaning rats for 6 weeks significantly increased their body weight gain. After the intervention, the level of total short-chain fatty acids (SCFAs) was restored to 1,512.7 µg/g, while the level was only 637.1 µg/g in the 7% protein group. The amino acids (valine, isoleucine, phenylalanine, and tryptophan) increased in the colon, and vitamin B6 metabolism was significantly influenced in undernourished rats. The tryptophan and glycine-serine-threonine pathways were elevated, leading to an increase in the level of tryptophan and 5-hydroxytryptophan (5-HTP) in the serum. In addition, the relative abundance of Lachnospiraceae_NK4A136_group and Lactobacillus increased, while Enterococcus and Streptococcus decreased compared to undernourished rats. Overall, soy protein improved the growth of rats with malnutrition in early life by regulating gut microbiota and metabolites in the colon and serum.

4.
J Agric Food Chem ; 69(25): 7028-7036, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34138556

ABSTRACT

Increasing attention has been focused on plant-derived peptides because of their potential bioactivities. In this study, bioactive peptides were released from extruded adzuki bean protein by simulated gastrointestinal digestion. A peptide (KQS-1) sequenced as KQSESHFVDAQPEQQQR was separated and identified using ultrafiltration, pre-high-performance liquid chromatography (HPLC), and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). KQS-1 was shown to exert significant anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages by reducing the production of IL-1, IL-6, TNF-α, and MCP-1 to 38.31, 6.07, 43.96, and 41.74%, respectively. The involved signaling pathways were identified by transcriptome analysis. Overall, 5236 differentially expressed genes (DEGs) were identified. Gene ontology (GO) functions demonstrated that DEGs were significantly related to the NF-κB pathway. In conclusion, KQS-1 prevented the activation and expression of NF-κB/caspase-1 by upstream and downstream factors. These findings highlight the bioactivity of adzuki bean peptides.


Subject(s)
Vigna , Anti-Inflammatory Agents/pharmacology , Chromatography, Liquid , Digestion , Lipopolysaccharides , NF-kappa B/genetics , Peptides , Plant Extracts , Tandem Mass Spectrometry
5.
J Agric Food Chem ; 69(42): 12566-12577, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34652137

ABSTRACT

Early undernutrition has been found to be closely associated with subsequent neurodevelopment. However, studies examining crude growth in terms of body weight/tail length cannot clarify how diets might mediate associations between the gut microbiota and cognitive dysfunction. In the present study, Sprague-Dawley (SD) rats were fed a 7% protein diet and mung bean protein diet (MBPD) for 6 weeks to assess central nervous system functions. Bifidobacterium longum subsp, Alloprevotella, and Lactobacillus were significantly altered after supplementary MBPD. Additionally, tryptophan, tyrosine, and glycine significantly restored in the brain, and the choline system also improved. Moreover, mung bean supplementation also upregulated expression of the brain-derived neurotrophic factor, postsynaptic density 95 protein (PSD95), synaptosome-associated protein 25 (SNAP25), downregulated toll-like receptor 4 (TLR4), and nuclear factor kB (NF-kB). Metabolites in the serum also underwent changes. Together, these results showed that malnutrition perturbed neurodevelopment, while MBPD reversed this trend.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Malnutrition , Vigna , Animals , Cognitive Dysfunction/genetics , NF-kappa B/genetics , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL