Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37963246

ABSTRACT

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Subject(s)
Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Humans , Swine , Streptococcal Infections/veterinary , Farms , Swine Diseases/epidemiology , Virulence/genetics , Streptococcus suis/genetics , Livestock
2.
PLoS Pathog ; 19(6): e1011433, 2023 06.
Article in English | MEDLINE | ID: mdl-37289828

ABSTRACT

Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.


Subject(s)
Bacteriophages , Staphylococcaceae , Staphylococcus Phages , Bacteriophages/physiology , Host Specificity , Phylogeny , Polymerase Chain Reaction , Staphylococcaceae/classification , Staphylococcaceae/virology , Staphylococcus aureus/virology , Staphylococcus Phages/physiology , Viral Plaque Assay , Virus Replication
3.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36840716

ABSTRACT

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Subject(s)
Actinobacillus pleuropneumoniae , Phase Variation , Animals , Swine , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Bacteria/genetics , DNA/metabolism
4.
Microbiology (Reading) ; 170(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39287974

ABSTRACT

The sit-and-wait hypothesis predicts that bacteria can become more virulent when they survive and transmit outside of their hosts due to circumventing the costs of host mortality. While this hypothesis is largely supported theoretically and through comparative analysis, experimental validation is limited. Here we test this hypothesis in Streptococcus suis, an opportunistic zoonotic pig pathogen, where a pathogenic ecotype proliferated during the change to intensive pig farming that amplifies opportunities for fomite transmission. We show in an in vitro environmental survival experiment that pathogenic ecotypes survive for longer than commensal ecotypes, despite similar rates of decline. The presence of a polysaccharide capsule has no consistent effect on survival. Our findings suggest that extended survival in the food chain may augment the zoonotic capability of S. suis. Moreover, eliminating the long-term environmental survival of bacteria could be a strategy that will both enhance infection control and curtail the evolution of virulence.


Subject(s)
Streptococcus suis , Animals , Swine , Streptococcus suis/pathogenicity , Streptococcus suis/genetics , Virulence , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/transmission , Microbial Viability , Swine Diseases/microbiology , Ecotype
5.
PLoS Genet ; 17(11): e1009864, 2021 11.
Article in English | MEDLINE | ID: mdl-34748531

ABSTRACT

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.


Subject(s)
Adaptation, Biological/genetics , Communicable Diseases, Emerging/microbiology , Mutation Rate , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Zoonoses/microbiology , Animals , Ecology , Streptococcus suis/isolation & purification , Streptococcus suis/pathogenicity , Virulence/genetics
6.
Mol Biol Evol ; 38(4): 1570-1579, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33313861

ABSTRACT

Emerging bacterial pathogens threaten global health and food security, and so it is important to ask whether these transitions to pathogenicity have any common features. We present a systematic study of the claim that pathogenicity is associated with genome reduction and gene loss. We compare broad-scale patterns across all bacteria, with detailed analyses of Streptococcus suis, an emerging zoonotic pathogen of pigs, which has undergone multiple transitions between disease and carriage forms. We find that pathogenicity is consistently associated with reduced genome size across three scales of divergence (between species within genera, and between and within genetic clusters of S. suis). Although genome reduction is also found in mutualist and commensal bacterial endosymbionts, genome reduction in pathogens cannot be solely attributed to the features of their ecology that they share with these species, that is, host restriction or intracellularity. Moreover, other typical correlates of genome reduction in endosymbionts (reduced metabolic capacity, reduced GC content, and the transient expansion of nonfunctional elements) are not consistently observed in pathogens. Together, our results indicate that genome reduction is a consistent correlate of pathogenicity in bacteria.


Subject(s)
Bacteria/pathogenicity , Biological Evolution , Genome Size , Genome, Bacterial , Animals , Bacteria/genetics , Symbiosis
7.
BMC Biol ; 19(1): 191, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493269

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.


Subject(s)
Streptococcus suis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests , Pharmaceutical Preparations , Streptococcus suis/drug effects , Streptococcus suis/genetics , Swine
8.
Infect Immun ; 88(5)2020 04 20.
Article in English | MEDLINE | ID: mdl-32094250

ABSTRACT

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Subject(s)
Haemophilus parasuis/genetics , Animals , Biofilms , Haemophilus Infections/microbiology , Macrophages, Alveolar/microbiology , Phagocytosis/physiology , Swine , Swine Diseases/microbiology , Virulence/genetics
9.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460764

ABSTRACT

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Subject(s)
Haemophilus Infections/veterinary , Haemophilus parasuis/immunology , Recombinant Proteins/immunology , Swine Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/immunology , Haemophilus parasuis/genetics , Serogroup , Sus scrofa , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Tissue Culture Techniques/veterinary , Vaccination/veterinary , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
10.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30304532

ABSTRACT

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Subject(s)
Gene Expression Regulation, Bacterial , Methyltransferases/genetics , Regulon , Streptococcus suis/enzymology , Alleles , Animals , DNA Methylation , DNA Modification Methylases/metabolism , DNA, Bacterial/metabolism , Epigenesis, Genetic , Escherichia coli , Genetic Variation , Genome, Bacterial , Microsatellite Repeats , Oligonucleotides/genetics , Phenotype , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus suis/genetics , Swine
11.
J Clin Microbiol ; 57(7)2019 07.
Article in English | MEDLINE | ID: mdl-30944194

ABSTRACT

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Subject(s)
Carrier State/veterinary , Streptococcal Infections/veterinary , Streptococcus suis/isolation & purification , Streptococcus suis/pathogenicity , Swine Diseases/microbiology , Animals , Carrier State/microbiology , England , Genetic Markers/genetics , Genome, Bacterial/genetics , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Palatine Tonsil/microbiology , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Swine , Virulence/genetics , Wales
12.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29203546

ABSTRACT

Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis, the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


Subject(s)
Bacterial Proteins/immunology , Streptococcal Infections/veterinary , Streptococcal Vaccines/administration & dosage , Streptococcus suis/immunology , Swine Diseases/prevention & control , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Cross Protection , Female , Genomics , Male , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/genetics , Streptococcal Vaccines/immunology , Streptococcus suis/chemistry , Streptococcus suis/genetics , Streptococcus suis/pathogenicity , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Virulence
13.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29427423

ABSTRACT

Streptococcus suis, a global zoonosis of pigs, shows regional differences in the prevalence of human-associated disease for Asian and non-Asian countries. The isolation rates and diversities of S. suis on tonsils of healthy slaughter pigs in China and the United Kingdom were studied for effects of geography, temperature, pig age, and farm type. Isolates underwent analysis of molecular serotype and multilocus sequence type and virulence-associated genotyping. Although we found no significant difference in positive isolation rates between Chinese and UK farms, the prevalences of serotypes previously associated with human disease were significantly greater in the Chinese collection (P = 0.003). A significant effect of temperature was found on the positive isolation rate of the Chinese samples and the prevalence of human disease-associated serotypes in the UK S. suis population (China, P = 0.004; United Kingdom, P = 0.024) and on the prevalence of isolates carrying key virulence genes in China (P = 0.044). Finally, we found marked diversity among S. suis isolates, with statistically significant temperature effects on detection of multiple strain types within individual pigs. This study highlighted the high carriage prevalence and diversity of S. suis among clinically healthy pig herds of China and the United Kingdom. The significant effect of temperature on prevalence of isolation, human disease-associated serotypes, and diversity carried by individual pigs may shed new light on geographic variations in human S. suis-associated disease.IMPORTANCEStreptococcus suis is a global zoonotic pathogen and also a normal colonizer mainly carried on the tonsil of pigs. Thus, it is important to study the effect of environmental and management-associated factors on the S. suis populations in clinically healthy pigs. In this research, we investigated the similarities and differences between the S. suis populations obtained from different pig ages, seasons, and farm management systems and discovered the relationship between high climatic temperature and the prevalence of S. suis.


Subject(s)
Animal Husbandry/methods , Genetic Variation , Streptococcal Infections/veterinary , Streptococcus suis/physiology , Swine Diseases/epidemiology , Age Factors , Animals , China/epidemiology , Genome, Bacterial , Longitudinal Studies , Prevalence , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Swine , Swine Diseases/microbiology , Temperature , United Kingdom/epidemiology
14.
J Gen Virol ; 98(11): 2864-2875, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29058655

ABSTRACT

By providing pollination services, bees are among the most important insects, both in ecological and economical terms. Combined next-generation and classical sequencing approaches were applied to discover and study new insect viruses potentially harmful to bees. A bioinformatics virus discovery pipeline was used on individual Illumina transcriptomes of 13 wild bees from three species from the genus Halictus and 30 ants from six species of the genera Messor and Aphaenogaster. This allowed the discovery and description of three sequences of a new virus termed Halictus scabiosae Adlikon virus (HsAV). Phylogenetic analyses of ORF1, RNA-dependent RNA-polymerase (RdRp) and capsid genes showed that HsAV is closely related to (+)ssRNA viruses of the unassigned Sinaivirus genus but distant enough to belong to a different new genus we called Halictivirus. In addition, our study of ant transcriptomes revealed the first four sinaivirus sequences from ants (Messor barbarus, M. capitatus and M. concolor). Maximum likelihood phylogenetic analyses were performed on a 594 nt fragment of the ORF1/RdRp region from 84 sinaivirus sequences, including 31 new Lake Sinai viruses (LSVs) from honey bees collected in five countries across the globe and the four ant viral sequences. The phylogeny revealed four main clades potentially representing different viral species infecting honey bees. Moreover, the ant viruses belonged to the LSV4 clade, suggesting a possible cross-species transmission between bees and ants. Lastly, wide honey bee screening showed that all four LSV clades have worldwide distributions with no obvious geographical segregation.


Subject(s)
Ants/virology , Bees/virology , Insect Viruses/classification , Insect Viruses/isolation & purification , Phylogeny , Animals , Genetic Variation , Insect Viruses/genetics , Sequence Analysis, DNA , Viral Proteins/genetics
15.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Article in English | MEDLINE | ID: mdl-28615466

ABSTRACT

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Subject(s)
Haemophilus Infections/diagnosis , Haemophilus Infections/veterinary , Haemophilus parasuis/genetics , Haemophilus parasuis/pathogenicity , Molecular Diagnostic Techniques/methods , Swine Diseases/diagnosis , Animals , Genome/genetics , Haemophilus Infections/microbiology , Haemophilus parasuis/isolation & purification , Multiplex Polymerase Chain Reaction , Swine , Swine Diseases/microbiology , Virulence/genetics
16.
Syst Biol ; 65(2): 265-79, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26559010

ABSTRACT

Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives.


Subject(s)
Computer Simulation/standards , Genome, Bacterial/genetics , Phylogeny , Rickettsia/classification , Rickettsia/genetics , Biological Evolution , Classification
17.
Mol Biol Evol ; 32(4): 1020-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25568346

ABSTRACT

Varicella-zoster virus (VZV) causes chickenpox and shingles, and is found in human populations worldwide. The lack of temporal signal in the diversity of VZV makes substitution rate estimates unreliable, which is a barrier to understanding the context of its global spread. Here, we estimate rates of evolution by studying live attenuated vaccines, which evolved in 22 vaccinated patients for known periods of time, sometimes, but not always undergoing latency. We show that the attenuated virus evolves rapidly (∼ 10(-6) substitutions/site/day), but that rates decrease dramatically when the virus undergoes latency. These data are best explained by a model in which viral populations evolve for around 13 days before becoming latent, but then undergo no replication during latency. This implies that rates of viral evolution will depend strongly on transmission patterns. Nevertheless, we show that implausibly long latency periods are required to date the most recent common ancestor of extant VZV to an "out-of-Africa" migration with humans, as has been previously suggested.


Subject(s)
Chickenpox Vaccine/genetics , Evolution, Molecular , Herpesvirus 3, Human/genetics , Virus Latency/genetics , Base Sequence , Chickenpox/epidemiology , Chickenpox/virology , Child , Herpes Zoster/virology , Herpesvirus 3, Human/physiology , Humans , Molecular Sequence Data , Vaccines, Attenuated/genetics
18.
Genome Res ; 23(4): 653-64, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23299977

ABSTRACT

The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.


Subject(s)
Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Cluster Analysis , Drug Resistance, Bacterial/genetics , Genomics , Genotype , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Pandemics , Phylogeny , Phylogeography , Staphylococcal Infections/transmission , United Kingdom/epidemiology
19.
PLoS Genet ; 9(12): e1003896, 2013.
Article in English | MEDLINE | ID: mdl-24348259

ABSTRACT

Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.


Subject(s)
Drosophila melanogaster/genetics , Longevity/genetics , Virus Diseases/genetics , Wolbachia/genetics , Animals , Drosophila melanogaster/microbiology , Drosophila melanogaster/virology , Evolution, Molecular , Genome, Insect , Genomics , Insect Viruses/genetics , Insect Viruses/pathogenicity , Phenotype , Phylogeny , Wolbachia/growth & development
20.
Proc Natl Acad Sci U S A ; 110(2): 577-82, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23271803

ABSTRACT

The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.


Subject(s)
Evolution, Molecular , Genetic Drift , Genetic Variation , Mutation Rate , Yersinia pestis/genetics , Base Sequence , China , Genetics, Population , Likelihood Functions , Models, Genetic , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL