Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639105

ABSTRACT

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Subject(s)
Hypertension, Pulmonary , Vascular Remodeling , Zinc Finger Protein GLI1 , Animals , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Mice , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Mice, Transgenic , Male , Humans , Hypoxia/metabolism , Hypoxia/physiopathology
2.
Cell ; 147(2): 293-305, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22000010

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.


Subject(s)
Disease Models, Animal , Lung/pathology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/pathology , Animals , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lung/blood supply , Lung/physiopathology , Lysine/analogs & derivatives , Lysine/pharmacology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology
3.
Am J Physiol Cell Physiol ; 326(6): C1637-C1647, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646782

ABSTRACT

Bleomycin (BLM)-induced lung injury in mice is a valuable model for investigating the molecular mechanisms that drive inflammation and fibrosis and for evaluating potential therapeutic approaches to treat the disease. Given high variability in the BLM model, it is critical to accurately phenotype the animals in the course of an experiment. In the present study, we aimed to demonstrate the utility of microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation for rapid phenotyping of BLM mice. µCT was performed in freely breathing C57BL/6J mice under isoflurane anesthesia on days 7 and 21 after BLM administration. Terminal invasive lung function measurement and histological assessment of the left lung collagen content were conducted as well. µCT image analysis demonstrated gradual and time-dependent development of lung injury as evident by alterations in the lung density, air-to-tissue volume ratio, and lung aeration in mice treated with BLM. The right and left lung were unequally affected. µCT-derived parameters such as lung density, air-to-tissue volume ratio, and nonaerated lung volume correlated well with the invasive lung function measurement and left lung collagen content. Our study demonstrates the utility of AI-CNN-powered µCT image analysis for rapid and accurate phenotyping of BLM mice in the course of disease development and progression.NEW & NOTEWORTHY Microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation is a rapid and powerful tool for noninvasive phenotyping of bleomycin mice over the course of the disease. This, in turn, allows earlier and more reliable identification of therapeutic effects of new drug candidates, ultimately leading to the reduction of unnecessary procedures in animals in pharmacological research.


Subject(s)
Bleomycin , Lung Injury , Lung , Mice, Inbred C57BL , Neural Networks, Computer , Phenotype , Animals , Bleomycin/toxicity , Lung Injury/chemically induced , Lung Injury/diagnostic imaging , Lung Injury/pathology , Lung Injury/metabolism , Lung/diagnostic imaging , Lung/drug effects , Lung/pathology , Lung/metabolism , Mice , X-Ray Microtomography/methods , Disease Models, Animal , Artificial Intelligence , Male , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Collagen/metabolism
4.
Am J Respir Crit Care Med ; 208(5): 528-548, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37450768

ABSTRACT

Major advances in pulmonary arterial hypertension, pulmonary hypertension (PH) associated with lung disease, and chronic thromboembolic PH cast new light on the pathogenetic mechanisms, epidemiology, diagnostic approach, and therapeutic armamentarium for pulmonary vascular disease. Here, we summarize key basic, translational, and clinical PH reports, emphasizing findings that build on current state-of-the-art research. This review includes cutting-edge progress in translational pulmonary vascular biology, with a guide to the diagnosis of patients in clinical practice, incorporating recent PH definition revisions that continue emphasis on early detection of disease. PH management is reviewed including an overview of the evolving considerations for the approach to treatment of PH in patients with cardiopulmonary comorbidities, as well as a discussion of the groundbreaking sotatercept data for the treatment of pulmonary arterial hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Pulmonary Embolism , Vascular Diseases , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Pulmonary Arterial Hypertension/complications , Lung , Familial Primary Pulmonary Hypertension/complications , Chronic Disease , Pulmonary Embolism/complications
5.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37219322

ABSTRACT

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Antigens, CD/metabolism , Antioxidants , Cell Adhesion Molecules/metabolism , GPI-Linked Proteins/adverse effects , GPI-Linked Proteins/metabolism , Heme Oxygenase-1/metabolism , Oxidative Stress , Nicotiana
6.
Circulation ; 145(12): 916-933, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35175782

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.


Subject(s)
Hypertension, Pulmonary , Animals , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Humans , Hypertension, Pulmonary/pathology , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Osteonectin/genetics , Pulmonary Artery , Vascular Remodeling/genetics
7.
Eur Respir J ; 62(5)2023 11.
Article in English | MEDLINE | ID: mdl-37884305

ABSTRACT

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Subject(s)
Cigarette Smoking , Emphysema , Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypertension, Pulmonary/complications , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Lung/metabolism , Emphysema/complications , Mice, Inbred C57BL
8.
Eur Respir J ; 61(6)2023 06.
Article in English | MEDLINE | ID: mdl-37105573

ABSTRACT

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Pneumonia , Humans , Animals , Mice , Nicotine/adverse effects , E-Cigarette Vapor/adverse effects , E-Cigarette Vapor/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Lung/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology
9.
Stem Cells ; 40(6): 605-617, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35437594

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Humans , Hyperoxia/metabolism , Infant, Newborn , Lung/metabolism , Mice , Mice, Transgenic
10.
Proc Natl Acad Sci U S A ; 117(1): 717-726, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871197

ABSTRACT

Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, ß-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC's ability to mediate SF responsiveness relies on the "force-from-filament" principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.


Subject(s)
Asparagine/metabolism , Epithelial Sodium Channels/metabolism , Extracellular Matrix/metabolism , Protein Domains/genetics , Animals , Asparagine/chemistry , Disease Models, Animal , Endothelial Cells , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/genetics , Female , Glycosylation , HEK293 Cells , Humans , Hypertension/etiology , Hypertension/pathology , Hypertension/physiopathology , Male , Mice , Mice, Transgenic , Mutagenesis, Site-Directed , Oocytes , Patch-Clamp Techniques , Point Mutation , Polysaccharides/chemistry , Stress, Mechanical , Xenopus laevis
11.
Pneumologie ; 77(11): 862-870, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37963476

ABSTRACT

The recently published new European guidelines for diagnosis and treatment of pulmonary hypertension now offer the so far most extensive description of genetic testing and counselling for pulmonary arterial hypertension patients. In addition, the importance of a clinical screening of healthy mutation carriers is highlighted as well as the genetic testing of patients with a suspicion of pulmonary veno-occlusive disease. We frame the respective parts of the guidelines on genetic testing and counselling in the context of recent data and provide comments. Finally, we give an outlook on novel molecular approaches starting from Sotatercept, addressing ion channels and novel therapeutic developments.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Pulmonary Veno-Occlusive Disease , Humans , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/therapy , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/therapy , Pulmonary Veno-Occlusive Disease/diagnosis , Pulmonary Veno-Occlusive Disease/genetics , Pulmonary Veno-Occlusive Disease/therapy
12.
Gene Ther ; 29(12): 655-664, 2022 12.
Article in English | MEDLINE | ID: mdl-33664504

ABSTRACT

Plants and other organisms, but not insects or vertebrates, express the auxiliary respiratory enzyme alternative oxidase (AOX) that bypasses mitochondrial respiratory complexes III and/or IV when impaired. Persistent expression of AOX from Ciona intestinalis in mammalian models has previously been shown to be effective in alleviating some metabolic stresses produced by respiratory chain inhibition while exacerbating others. This implies that chronic AOX expression may modify or disrupt metabolic signaling processes necessary to orchestrate adaptive remodeling, suggesting that its potential therapeutic use may be confined to acute pathologies, where a single course of treatment would suffice. One possible route for administering AOX transiently is AOX-encoding nucleic acid constructs. Here we demonstrate that AOX-encoding chemically-modified RNA (cmRNA), sequence-optimized for expression in mammalian cells, was able to support AOX expression in immortalized mouse embryonic fibroblasts (iMEFs), human lung carcinoma cells (A549) and primary mouse pulmonary arterial smooth muscle cells (PASMCs). AOX protein was detectable as early as 3 h after transfection, had a half-life of ~4 days and was catalytically active, thus supporting respiration and protecting against respiratory inhibition. Our data demonstrate that AOX-encoding cmRNA optimized for use in mammalian cells represents a viable route to investigate and possibly treat mitochondrial respiratory disorders.


Subject(s)
Mitochondria , RNA , Animals , Humans , Mice , Fibroblasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA/metabolism , A549 Cells , Transfection
13.
Circulation ; 143(14): 1394-1410, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33334130

ABSTRACT

BACKGROUND: Vascular smooth muscle cells (VSMCs) show a remarkable phenotypic plasticity, allowing acquisition of contractile or synthetic states, but critical information is missing about the physiologic signals, promoting formation, and maintenance of contractile VSMCs in vivo. BMP9 and BMP10 (bone morphogenetic protein) are known to regulate endothelial quiescence after secretion from the liver and right atrium, whereas a direct role in the regulation of VSMCs was not investigated. We studied the role of BMP9 and BMP10 for controlling formation of contractile VSMCs. METHODS: We generated several cell type-specific loss- and gain-of-function transgenic mouse models to investigate the physiologic role of BMP9, BMP10, ALK1 (activin receptor-like kinase 1), and SMAD7 in vivo. Morphometric assessments, expression analysis, blood pressure measurements, and single molecule fluorescence in situ hybridization were performed together with analysis of isolated pulmonary VSMCs to unravel phenotypic and transcriptomic changes in response to absence or presence of BMP9 and BMP10. RESULTS: Concomitant genetic inactivation of Bmp9 in the germ line and Bmp10 in the right atrium led to dramatic changes in vascular tone and diminution of the VSMC layer with attenuated contractility and decreased systemic as well as right ventricular systolic pressure. On the contrary, overexpression of Bmp10 in endothelial cells of adult mice dramatically enhanced formation of contractile VSMCs and increased systemic blood pressure as well as right ventricular systolic pressure. Likewise, BMP9/10 treatment induced an ALK1-dependent phenotypic switch from synthetic to contractile in pulmonary VSMCs. Smooth muscle cell-specific overexpression of Smad7 completely suppressed differentiation and proliferation of VSMCs and reiterated defects observed in adult Bmp9/10 double mutants. Deletion of Alk1 in VSMCs recapitulated the Bmp9/10 phenotype in pulmonary but not in aortic and coronary arteries. Bulk expression analysis and single molecule RNA-fluorescence in situ hybridization uncovered vessel bed-specific, heterogeneous expression of BMP type 1 receptors, explaining phenotypic differences in different Alk1 mutant vessel beds. CONCLUSIONS: Our study demonstrates that BMP9 and BMP10 act directly on VSMCs for induction and maintenance of their contractile state. The effects of BMP9/10 in VSMCs are mediated by different combinations of BMP type 1 receptors in a vessel bed-specific manner, offering new opportunities to manipulate blood pressure in the pulmonary circulation.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factor 2/metabolism , Muscle, Smooth, Vascular/physiology , Myocardial Contraction/physiology , Animals , Cell Differentiation , Humans , Mice
14.
Circulation ; 144(13): 1042-1058, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34247492

ABSTRACT

BACKGROUND: The pathogenesis of life-threatening cardiopulmonary diseases such as pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions that is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. METHODS: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human patients with PH and COPD for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular, and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. RESULTS: We discovered a strong reduction of the histone modifications of H4K20me2/3 in human patients with COPD but not patients with PH that depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in cardiopulmonary progenitor cells caused a COPD-like/PH phenotype in mice including the formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyperproliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of the superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide concentrations, causing vascular defects and impairing alveolarization. CONCLUSIONS: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary codevelopment and uncover the developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD and aid the development of epigenetic drugs for the treatment of cardiopulmonary diseases.


Subject(s)
Epigenesis, Genetic/genetics , Histone-Lysine N-Methyltransferase/metabolism , Hypertension, Pulmonary/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Stem Cells/metabolism , Animals , Humans , Mice , Mice, Knockout
15.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35058248

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive disease characterised by pro-proliferative and anti-apoptotic phenotype in vascular cells, leading to pulmonary vascular remodelling and right heart failure. Peptidyl-prolyl cis/trans isomerase, NIMA interacting 1 (Pin1), a highly conserved enzyme, which binds to and catalyses the isomerisation of specific phosphorylated Ser/Thr-Pro motifs, acts as a molecular switch in multiple coordinated cellular processes. We hypothesised that Pin1 plays a substantial role in PAH, and its inhibition with a natural organic compound, Juglone, would reverse experimental pulmonary hypertension. RESULTS: We demonstrated that the expression of Pin1 was markedly elevated in experimental pulmonary hypertension (i.e. hypoxia-induced mouse and Sugen/hypoxia-induced rat models) and pulmonary arterial smooth muscle cells of patients with clinical PAH. In vitro Pin1 inhibition by either Juglone treatment or short interfering RNA knockdown resulted in an induction of apoptosis and decrease in proliferation of human pulmonary vascular cells. Stimulation with growth factors induced Pin1 expression, while its inhibition reduced the activity of numerous PAH-related transcription factors, such as hypoxia-inducible factor (HIF)-α and signal transducer and activator of transcription (STAT). Juglone administration lowered pulmonary vascular resistance, enhanced right ventribular function, improved pulmonary vascular and cardiac remodelling in the Sugen/hypoxia rat model of PAH and the chronic hypoxia-induced pulmonary hypertension model in mice. CONCLUSION: Our study demonstrates that targeting of Pin1 with small molecule inhibitor, Juglone, might be an attractive future therapeutic strategy for PAH and right heart disease secondary to PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Adaptor Proteins, Signal Transducing , Animals , Cell Proliferation , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/drug therapy , Hypoxia , Mice , NIMA-Interacting Peptidylprolyl Isomerase , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Rats
16.
Eur Respir J ; 59(4)2022 04.
Article in English | MEDLINE | ID: mdl-34475225

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS: To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS: Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION: In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.


Subject(s)
Emphysema , Hypertension, Pulmonary , Pulmonary Emphysema , Animals , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/prevention & control , Hypoxia , Macrophages/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Smoke/adverse effects , Nicotiana/metabolism , Vascular Remodeling
17.
Am J Respir Cell Mol Biol ; 64(1): 100-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33052714

ABSTRACT

In pulmonary arterial hypertension (PAH), progressive structural remodeling accounts for the pulmonary vasculopathy including the obliteration of the lung vasculature that causes an increase in vascular resistance and mean blood pressure in the pulmonary arteries ultimately leading to right heart failure-mediated death. Deciphering the molecular details of aberrant signaling of pulmonary vascular cells in PAH is fundamental for the development of new therapeutic strategies. We aimed to identify kinases as new potential drug targets that are dysregulated in PAH by means of a peptide-based kinase activity assay. We performed a tyrosine kinase-dependent phosphorylation assay using 144 selected microarrayed substrate peptides. The differential signature of phosphopeptides was used to predict alterations in tyrosine kinase activities in human pulmonary arterial smooth muscle cells (HPASMCs) from patients with idiopathic PAH (IPAH) compared with healthy control cells. Thereby, we observed an overactivation and an increased expression of Jak2 (Janus kinase 2) in HPASMCs from patients with IPAH as compared with controls. In vitro, IL-6-induced proliferation and migration of HPASMCs from healthy individuals as well as from patients with IPAH were reduced in a dose-dependent manner by the U.S. Food and Drug Administration-approved Jak1 and Jak2 inhibitor ruxolitinib. In vivo, ruxolitinib therapy in two experimental models of pulmonary arterial hypertension dose-dependently attenuated the elevation in pulmonary arterial pressure, partially reduced right ventricular hypertrophy, and almost completely restored cardiac index without signs of adverse events on cardiac function. Therefore, we propose that ruxolitinib may present a novel therapeutic option for patients with PAH by reducing pulmonary vascular remodeling through effectively blocking Jak2-Stat3 (signal transducer of activators of transcription)-mediated signaling pathways.


Subject(s)
Hypertension, Pulmonary/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Animals , Cells, Cultured , Humans , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nitriles , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pyrazoles/pharmacology , Pyrimidines , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Vascular Resistance/drug effects , Vascular Resistance/physiology
18.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L764-L774, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34318685

ABSTRACT

Sex-dependent differences in immunity and coagulation play an active role in the outcome of community-acquired pneumonia (CAP). Contact phase proteins act at the crossroads between inflammation and coagulation thus representing a point of convergence in host defense against infection. Here, we measured the levels of factor XII (FXII), FXIIa-C1 esterase inhibitor (C1INH) complexes, and high-molecular-weight kininogen (HK) in plasma of patients with CAP and correlated them to clinical disease severity. Levels of FXIIa-C1INH/albumin ratio were elevated, irrespective of sex, in plasma of patients with CAP (n = 139) as compared with age-matched donors (n = 58). No simultaneous decrease in FXII levels, indicating its consumption, was observed. Stratification by sex revealed augmented FXII levels in plasma of women with CAP as compared with sex-matched donors yet no apparent differences in men. This sex-specific effect was, however, attributable to lower FXII levels in female donors relative to men donors. Plasma estradiol levels mirrored those for FXII. Levels of HK/albumin ratio were decreased in CAP plasma as compared with donors, however, after stratification by sex, this difference was only observed in women and was related to higher HK/albumin values in female donors as opposed to male donors. Finally, strong negative correlation between plasma levels of HK/albumin ratio and CAP severity, as assessed by CRB65 score, in males and females was observed. Our study identifies sex-dependent differences in plasma levels of the contact phase proteins in elderly subjects that may contribute to specific clinical outcomes in CAP between men and women.


Subject(s)
Community-Acquired Infections/blood , Complement C1 Inhibitor Protein/analysis , Factor XII/analysis , Kininogens/blood , Pneumonia/blood , Aged , Community-Acquired Infections/pathology , Estradiol/blood , Female , Humans , Male , Pneumonia/pathology , Serum Albumin/analysis , Sex Factors
19.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L903-L915, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760647

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.


Subject(s)
Cigarette Smoking , Doxycycline/pharmacology , Hypertension, Pulmonary , Pulmonary Emphysema , Animals , Cigarette Smoking/drug therapy , Cigarette Smoking/genetics , Cigarette Smoking/metabolism , Cigarette Smoking/pathology , Disease Models, Animal , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Mice , Mice, Transgenic , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Time Factors
20.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498172

ABSTRACT

In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.


Subject(s)
Connexin 43/metabolism , Hypertension, Pulmonary/metabolism , Tetralogy of Fallot/metabolism , Ventricular Function , Animals , Connexin 43/genetics , Heart Ventricles/metabolism , Humans , Hypertension, Pulmonary/genetics , Tetralogy of Fallot/genetics
SELECTION OF CITATIONS
SEARCH DETAIL