Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
DNA Repair (Amst) ; 141: 103729, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089192

ABSTRACT

The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.


Subject(s)
DNA Repair , DNA Replication , Mitosis , Protein Tyrosine Phosphatases , Humans , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/genetics , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism
2.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472229

ABSTRACT

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Subject(s)
Protein Kinases , Signal Transduction , Protein Kinases/metabolism , Phosphorylation , Replication Protein A/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA Replication , DNA Damage , DNA, Single-Stranded , DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL