Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Am Chem Soc ; 146(5): 3343-3351, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38261381

ABSTRACT

Photocatalytic O2 reduction is an intriguing approach to producing H2O2, but its efficiency is often hindered by the limited solubility and mass transfer of O2 in the aqueous phase. Here, we design and fabricate a two-layered (2L) Janus fiber membrane photocatalyst with asymmetric hydrophobicity for efficient photocatalytic H2O2 production. The top layer of the membrane consists of superhydrophobic polytetrafluoroethylene (PTFE) fibers with a dispersed modified carbon nitride (mCN) photocatalyst. Amphiphilic Nafion (Naf) ionomer is sprayed onto this layer to modulate the microenvironment and achieve moderate hydrophobicity. In contrast, the bottom layer consists of bare PTFE fibers with high hydrophobicity. The elaborate structural configuration and asymmetric hydrophobicity feature of the optimized membrane photocatalyst (designated as 2L-mCN/F-Naf; F, PTFE) allow most mCN to be exposed with gas-liquid-solid triple-phase interfaces and enable rapid mass transfer of gaseous O2 within the hierarchical membrane, thus increasing the local O2 concentration near the mCN photocatalyst. As a result, the optimized 2L-mCN/F-Naf membrane photocatalyst shows remarkable photocatalytic H2O2 production activity, achieving a rate of 5.38 mmol g-1 h-1 under visible light irradiation.

2.
Small ; : e2403808, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770988

ABSTRACT

Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.

3.
Clin Exp Dermatol ; 49(7): 675-685, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38549552

ABSTRACT

Artificial intelligence (AI) solutions for skin cancer diagnosis continue to gain momentum, edging closer towards broad clinical use. These AI models, particularly deep-learning architectures, require large digital image datasets for development. This review provides an overview of the datasets used to develop AI algorithms and highlights the importance of dataset transparency for the evaluation of algorithm generalizability across varying populations and settings. Current challenges for curation of clinically valuable datasets are detailed, which include dataset shifts arising from demographic variations and differences in data collection methodologies, along with inconsistencies in labelling. These shifts can lead to differential algorithm performance, compromise of clinical utility, and the propagation of discriminatory biases when developed algorithms are implemented in mismatched populations. Limited representation of rare skin cancers and minoritized groups in existing datasets are highlighted, which can further skew algorithm performance. Strategies to address these challenges are presented, which include improving transparency, representation and interoperability. Federated learning and generative methods, which may improve dataset size and diversity without compromising privacy, are also examined. Lastly, we discuss model-level techniques that may address biases entrained through the use of datasets derived from routine clinical care. As the role of AI in skin cancer diagnosis becomes more prominent, ensuring the robustness of underlying datasets is increasingly important.


Subject(s)
Algorithms , Artificial Intelligence , Skin Neoplasms , Humans , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Deep Learning , Datasets as Topic
4.
Angew Chem Int Ed Engl ; : e202408846, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031731

ABSTRACT

Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.

5.
Angew Chem Int Ed Engl ; 63(8): e202317572, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38116911

ABSTRACT

Exploring unique single-atom sites capable of efficiently reducing O2 to H2 O2 while being inert to H2 O2 decomposition under light conditions is significant for H2 O2 photosynthesis, but it remains challenging. Herein, we report the facile design and fabrication of polymeric carbon nitride (CN) decorated with single-Zn sites that have tailorable local coordination environments, which is enabled by utilizing different Zn salt anions. Specifically, the O atom from acetate (OAc) anion participates in the coordination of single-Zn sites on CN, forming asymmetric Zn-N3 O moiety on CN (denoted as CN/Zn-OAc), in contrast to the obtained Zn-N4 sites when sulfate (SO4 ) is adopted (CN/Zn-SO4 ). Both experimental and theoretical investigations demonstrate that the Zn-N3 O moiety exhibits higher intrinsic activity for O2 reduction to H2 O2 than the Zn-N4 moiety. This is attributed to the asymmetric N/O coordination, which promotes the adsorption of O2 and the formation of the key intermediate *OOH on Zn sites due to their modulated electronic structure. Moreover, it is inactive for H2 O2 decomposition under both dark and light conditions. As a result, the optimized CN/Zn-OAc catalyst exhibits significantly improved photocatalytic H2 O2 production activity under visible light irradiation.

6.
Angew Chem Int Ed Engl ; 63(14): e202318236, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38323753

ABSTRACT

The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB3 unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CH2OH via a concerted proton-electron transfer mechanism. More prominent energy barriers are observed for the further dehydrogenation of the ⋅CH2OH intermediate on the OB3 unit, inhibiting the formation of some other by-products during the catalytic process. Additionally, a small downhill energy barrier for the coupling of ⋅CH2OH in the OB3 unit promotes the selective generation of EG. This study provides valuable insights into the underlying mechanisms and can serve as a guide for the design and optimization of photocatalysts for efficient and selective EG production under mild conditions.

7.
Global Spine J ; 14(6): 1827-1837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38263726

ABSTRACT

STUDY DESIGN: Systematic Review. OBJECTIVES: To systematically review the clinical outcomes, re-operation, and complication rates of lumbar TDR devices at mid-to long-term follow-up studies for the treatment of lumbar degenerative disc disease (DDD). METHODS: A systematic search was conducted on PubMed, SCOPUS, and Google Scholar to identify follow-up studies that evaluated clinical outcomes of lumbar TDR in patients with DDD. The included studies met the following criteria: prospective or retrospective studies published from 2012 to 2022; a minimum of 5 years post-operative follow-up; a study sample size >10 patients; patients >18 years of age; containing clinical outcomes with Oswestry Disability Index (ODI), Visual Analog Scale (VAS), complication or reoperation rates. RESULTS: Twenty-two studies were included with data on 2284 patients. The mean follow-up time was 8.30 years, with a mean follow-up rate of 86.91%. The study population was 54.97% female, with a mean age of 42.34 years. The mean VAS and ODI pain score improvements were 50.71 ± 6.91 and 30.39 ± 5.32 respectively. The mean clinical success and patient satisfaction rates were 74.79% ± 7.55% and 86.34% ± 5.64%, respectively. The mean complication and reoperation rates were 18.53% ± 6.33% and 13.6% ± 3.83%, respectively. There was no significant difference when comparing mid-term and long-term follow-up studies for all clinical outcomes. CONCLUSIONS: There were significant improvements in pain reduction at last follow-up in patients with TDRs. Mid-term follow-up data on clinical outcomes, complication and reoperation rates of lumbar TDRs were maintained longer term.

8.
J Med Case Rep ; 18(1): 43, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38311749

ABSTRACT

BACKGROUND: A carotid-cavernous fistula is an abnormal communication between the arteries and veins within the cavernous sinus. While conservative management may be prudent in low risk cases, many patients require intervention and endovascular embolization has evolved as the preferred method of treatment. Embolization can be performed via either the transarterial or transvenous approach. One major challenge of the transvenous approach is the complex and variable compartmentation of the cavernous sinus, which often requires the use of low profile microcatheters to navigate and reach the fistulous point. Fibered coils are also preferred when performing transvenous embolization of carotid-cavernous fistula, as they are of higher thrombogenicity and allow for faster occlusion of the fistula. However, most low profile (0.017-inch) microcatheters are not able to deploy fibered coils based on the manufacturer's instructions. CASE PRESENTATION: We present two successful cases of off-label use of Medtronic Concerto fibered coils via a 0.017-inch microcatheter during transvenous embolization of carotid-cavernous fistula in a 60-year-old and an 80-year-old Chinese female, respectively. CONCLUSION: Our case series highlight the possibility of deploying large diameter (up to 10 mm) Concerto fibered coils through a low profile (0.017-inch) microcatheter in an off-label manner for transvenous embolization of indirect carotid-cavernous fistula.


Subject(s)
Carotid-Cavernous Sinus Fistula , Cavernous Sinus , Embolization, Therapeutic , Fistula , Female , Humans , Middle Aged , Aged, 80 and over , Off-Label Use , Carotid-Cavernous Sinus Fistula/diagnostic imaging , Carotid-Cavernous Sinus Fistula/therapy , Cerebral Arteries , Embolization, Therapeutic/methods
9.
J Invest Dermatol ; 144(6): 1334-1343.e14, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38157931

ABSTRACT

Junctional epidermolysis bullosa (JEB) is a rare autosomal recessive genodermatosis with a broad spectrum of phenotypes. Current genotype-phenotype paradigms are insufficient to accurately predict JEB subtype and characteristics from genotype, particularly for splice site variants, which account for over a fifth of disease-causing variants in JEB. This study evaluated the genetic and clinical findings from a JEB cohort, investigating genotype-phenotype correlations through bioinformatic analyses and comparison with previously reported variants. Eighteen unique variants in LAMB3, LAMA3, LAMC2, or COL17A1 were identified from 17 individuals. Seven had severe JEB, 9 had intermediate JEB, and 1 had laryngo-onycho-cutaneous syndrome. Seven variants were previously unreported. Deep phenotyping was completed for all intermediate JEB cases and demonstrated substantial variation between individuals. Splice site variants underwent analysis with SpliceAI, a state-of-the-art artificial intelligence tool, to predict resultant transcripts. Predicted functional effects included exon skipping and cryptic splice site activation, which provided potential explanations for disease severity and in most cases correlated with laminin-332 immunofluorescence. RT-PCR was performed for 1 case to investigate resultant transcripts produced from the splice site variant. This study expands the JEB genomic and phenotypic landscape. Artificial intelligence tools show potential for predicting the functional effects of splice site variants and may identify candidates for confirmatory laboratory investigation. Investigation of RNA transcripts will help to further elucidate genotype-phenotype correlations for novel variants.


Subject(s)
Collagen Type XVII , Epidermolysis Bullosa, Junctional , Genetic Association Studies , Kalinin , Laminin , Non-Fibrillar Collagens , Severity of Illness Index , Humans , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Laminin/genetics , Male , Female , Non-Fibrillar Collagens/genetics , Child , Phenotype , Cell Adhesion Molecules/genetics , Child, Preschool , Autoantigens/genetics , RNA Splice Sites/genetics , Infant , Adolescent , Adult , Mutation , Young Adult , Genotype
10.
Adv Mater ; 36(18): e2312645, 2024 May.
Article in English | MEDLINE | ID: mdl-38271637

ABSTRACT

The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with C─N bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO.

11.
Adv Mater ; 36(33): e2405906, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943439

ABSTRACT

Deep-sea equipment usually operates under dwell-fatigue condition, which means the equipped energy storage devices must survive under the changing pressure. Special mechanical designs should be considered to maintain the electrochemical performance of electrodes under this extreme condition. In this work, an effective assembly strategy is proposed to accommodate the dwell-fatigue loading using Ag decorated reduced graphene oxide (rGO) foam (denoted as AGF) as a superelastic and robust Zn host. The wet-press assembly process enables the formation of highly porous and robust framework. The strong synergetic effect between rGO and Ag further guarantees AGF's superelasticity and ultrahigh mechanical strength. Meanwhile, the homogeneously distributed Ag species on the rGO sheets act as zincophilic sites to effectively facilitate Zn plating. Furthermore, AGF offers enough space to address the expansion during the charge and discharge cycles. As expected, the symmetrical cell using this AGF@Zn host demonstrates a long lifespan over 400 h at a depth-of-discharge of 50%. It is worth mentioning that the superelastic AGF host realizes stable Zn plating/stripping under varying pressures.

SELECTION OF CITATIONS
SEARCH DETAIL