Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29961571

ABSTRACT

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Subject(s)
Cell Adhesion Molecules/genetics , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/genetics , Hearing/genetics , Animals , Cell Adhesion/genetics , Cochlea/pathology , Deafness/genetics , Epithelium/pathology , Female , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurons/pathology , Spiral Ganglion/pathology
2.
Genet Med ; 21(5): 1199-1208, 2019 05.
Article in English | MEDLINE | ID: mdl-30287925

ABSTRACT

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.


Subject(s)
Extracellular Matrix Proteins/genetics , Facial Paralysis/congenital , Glycoproteins/genetics , Otosclerosis/genetics , Phosphoproteins/genetics , Adult , Bone and Bones/metabolism , Extracellular Matrix Proteins/metabolism , Facial Paralysis/etiology , Facial Paralysis/genetics , Facial Paralysis/metabolism , Family , Female , Genetic Diseases, X-Linked/genetics , Genetic Variation/genetics , Glycoproteins/metabolism , Hearing Loss/genetics , Heterozygote , Humans , Male , Pedigree , Phenotype , Phosphoproteins/metabolism , Exome Sequencing/methods
3.
Hum Genet ; 137(5): 389-400, 2018 May.
Article in English | MEDLINE | ID: mdl-29754270

ABSTRACT

Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.


Subject(s)
Hearing Loss/genetics , Heterozygote , LIM-Homeodomain Proteins/genetics , Mutation, Missense , Transcription Factors/genetics , Vestibular Diseases/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Child, Preschool , Female , Humans , Male , Middle Aged
4.
Am J Hum Genet ; 97(5): 647-60, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26522471

ABSTRACT

Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.


Subject(s)
Genetic Linkage , Hearing Loss, Unilateral/genetics , Mutation/genetics , Stem Cell Factor/genetics , Waardenburg Syndrome/genetics , Alleles , Animals , Female , Fluorescent Antibody Technique , Hearing Loss, Unilateral/metabolism , Hearing Loss, Unilateral/pathology , Humans , Male , Mice , NIH 3T3 Cells , Pedigree , Phenotype , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Waardenburg Syndrome/metabolism , Waardenburg Syndrome/pathology
5.
Hear Res ; 347: 56-62, 2017 04.
Article in English | MEDLINE | ID: mdl-28089734

ABSTRACT

DFNB28 is characterized by prelingual, severe to profound sensorineural hearing impairment (HI). It is associated with mutations in exon 6 and 7 of TRIOBP and has not been reported in the European population. Here, we describe two isolated cases of Dutch origin with congenital, moderate HI and compound heterozygous mutations in TRIOBP. Three of the mutations are novel, one nonsense mutation (c.5014G>T (p.Gly1672*)) and two frameshift mutations (c.2653del (p.Arg885Alafs*120) and c.3460_3461del (p.Leu1154Alafs*29)). The fourth mutation is the known c.3232dup (p.Arg1078Profs*6) mutation. Longitudinal audiometric analyses in one of the subjects revealed that HI was stable over a period of 15 years. Vestibular function was normal. Predicted effects of the mutations do not explain the relatively mild phenotype in the presented subjects, whereas location of the mutation might well contribute to the milder HI in one of the subjects. It is known that isoform classes TRIOBP-4 and TRIOBP-5 are important for stereocilia stability and rigidity. To our knowledge, p.Gly1672* is the first pathogenic variant identified in DFNB28 that does not affect isoform class TRIOBP-4. This suggests that a single TRIOBP copy to encode wildtype TRIOBP-4 is insufficient for normal hearing, and that at least one TRIOBP copy to encode TRIOBP-5 is indispensable for normal inner ear function. Furthermore, this study demonstrates that DFNB28 can be milder than reported so far and that mutations in TRIOBP are thus associated with a heterogeneous phenotype.


Subject(s)
Codon, Nonsense , Frameshift Mutation , Hearing Loss, Sensorineural/genetics , Hearing/genetics , Microfilament Proteins/genetics , Auditory Threshold , DNA Mutational Analysis , Genetic Markers , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/physiopathology , Hearing Loss, Sensorineural/psychology , Hearing Tests , Heredity , Humans , Pedigree , Phenotype , Risk Factors , Severity of Illness Index
6.
Eur J Hum Genet ; 25(3): 308-314, 2017 02.
Article in English | MEDLINE | ID: mdl-28000701

ABSTRACT

Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.


Subject(s)
Exome , Genetic Testing/statistics & numerical data , Hearing Loss/genetics , Sequence Analysis, DNA/statistics & numerical data , Connexin 26 , Connexins/genetics , DNA Copy Number Variations , Extracellular Matrix Proteins/genetics , GPI-Linked Proteins/genetics , Genetic Testing/standards , Hearing Loss/diagnosis , Hearing Loss/epidemiology , Humans , Intercellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Mutation , Myosin Heavy Chains/genetics , Myosins/genetics , Netherlands , Sequence Analysis, DNA/standards
SELECTION OF CITATIONS
SEARCH DETAIL