Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Genes Dev ; 37(19-20): 863-864, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37914350

ABSTRACT

Mutations in the methyl-DNA binding domain of MECP2 cause Rett syndrome; however, distinct mutations are associated with different severity of the disease. Live-cell imaging and single-molecule tracking are sensitive methods to quantify the DNA binding affinity and diffusion dynamics of nuclear proteins. In this issue of Genes & Development, Zhou and colleagues (pp. 883-900) used these imaging methods to quantitatively describe the partial loss of DNA binding resulting from a novel pathological MECP2 mutation with intermediate disease severity. These data demonstrate how single-molecule tracking can advance understanding of the molecular mechanisms connecting MECP2 mutations with Rett syndrome pathophysiology.


Subject(s)
Rett Syndrome , Humans , Rett Syndrome/genetics , Methyl-CpG-Binding Protein 2/genetics , DNA/metabolism , Mutation , Nuclear Proteins/metabolism , Protein Domains
3.
Hum Mol Genet ; 31(9): 1430-1442, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34788807

ABSTRACT

Rahman syndrome (RMNS) is a rare genetic disorder characterized by mild to severe intellectual disability, hypotonia, anxiety, autism spectrum disorder, vision problems, bone abnormalities and dysmorphic facies. RMNS is caused by de novo heterozygous mutations in the histone linker gene H1-4; however, mechanisms underlying impaired neurodevelopment in RMNS are not understood. All reported mutations associated with RMNS in H1-4 are small insertions or deletions that create a shared frameshift, resulting in a H1.4 protein that is both truncated and possessing an abnormal C-terminus frameshifted tail (H1.4 CFT). To expand understanding of mutations and phenotypes associated with mutant H1-4, we identified new variants at both the C- and N-terminus of H1.4. The clinical features of mutations identified at the C-terminus are consistent with other reports and strengthen the support of pathogenicity of H1.4 CFT. To understand how H1.4 CFT may disrupt brain function, we exogenously expressed wild-type or H1.4 CFT protein in rat hippocampal neurons and assessed neuronal structure and function. Genome-wide transcriptome analysis revealed ~ 400 genes altered in the presence of H1.4 CFT. Neuronal genes downregulated by H1.4 CFT were enriched for functional categories involved in synaptic communication and neuropeptide signaling. Neurons expressing H1.4 CFT also showed reduced neuronal activity on multielectrode arrays. These data are the first to characterize the transcriptional and functional consequence of H1.4 CFT in neurons. Our data provide insight into causes of neurodevelopmental impairments associated with frameshift mutations in the C-terminus of H1.4 and highlight the need for future studies on the function of histone H1.4 in neurons.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Animals , Autism Spectrum Disorder/genetics , Frameshift Mutation/genetics , Histones/genetics , Histones/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Rats
4.
Nat Methods ; 18(8): 965-974, 2021 08.
Article in English | MEDLINE | ID: mdl-34341582

ABSTRACT

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.


Subject(s)
CRISPR-Cas Systems , Epigenesis, Genetic , Epigenome , Gene Editing/methods , Gene Expression Regulation , Animals , Brain/metabolism , Female , Fibroblasts/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Transgenic , T-Lymphocytes/metabolism
5.
Mol Psychiatry ; 28(8): 3414-3428, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35173267

ABSTRACT

Parvalbumin-expressing (PV+) interneurons of the nucleus accumbens (NAc) play an essential role in the addictive-like behaviors induced by psychostimulant exposure. To identify molecular mechanisms of PV+ neuron plasticity, we isolated interneuron nuclei from the NAc of male and female mice following acute or repeated exposure to amphetamine (AMPH) and sequenced for cell type-specific RNA expression and chromatin accessibility. AMPH regulated the transcription of hundreds of genes in PV+ interneurons, and this program was largely distinct from that regulated in other NAc GABAergic neurons. Chromatin accessibility at enhancers predicted cell-type specific gene regulation, identifying transcriptional mechanisms of differential AMPH responses. Finally, we assessed expression of PV-enriched, AMPH-regulated genes in an Mecp2 mutant mouse strain that shows heightened behavioral sensitivity to psychostimulants to explore the functional importance of this transcriptional program. Together these data provide novel insight into the cell-type specific programs of transcriptional plasticity in NAc neurons that underlie addictive-like behaviors.


Subject(s)
Amphetamine , Central Nervous System Stimulants , Male , Female , Mice , Animals , Amphetamine/pharmacology , Nucleus Accumbens/metabolism , Central Nervous System Stimulants/pharmacology , Interneurons/metabolism , GABAergic Neurons , Chromatin/metabolism
6.
Am J Hum Genet ; 107(4): 743-752, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32946764

ABSTRACT

Analyzing genomic data across populations is central to understanding the role of genetic factors in health and disease. Successful data sharing relies on public support, which requires attention to whether people around the world are willing to donate their data that are then subsequently shared with others for research. However, studies of such public perceptions are geographically limited and do not enable comparison. This paper presents results from a very large public survey on attitudes toward genomic data sharing. Data from 36,268 individuals across 22 countries (gathered in 15 languages) are presented. In general, publics across the world do not appear to be aware of, nor familiar with, the concepts of DNA, genetics, and genomics. Willingness to donate one's DNA and health data for research is relatively low, and trust in the process of data's being shared with multiple users (e.g., doctors, researchers, governments) is also low. Participants were most willing to donate DNA or health information for research when the recipient was specified as a medical doctor and least willing to donate when the recipient was a for-profit researcher. Those who were familiar with genetics and who were trusting of the users asking for data were more likely to be willing to donate. However, less than half of participants trusted more than one potential user of data, although this varied across countries. Genetic information was not uniformly seen as different from other forms of health information, but there was an association between seeing genetic information as special in some way compared to other health data and increased willingness to donate. The global perspective provided by our "Your DNA, Your Say" study is valuable for informing the development of international policy and practice for sharing genomic data. It highlights that the research community not only needs to be worthy of trust by the public, but also urgent steps need to be taken to authentically communicate why genomic research is necessary and how data donation, and subsequent sharing, is integral to this.


Subject(s)
Genome, Human , Genomics/ethics , Information Dissemination/ethics , Sequence Analysis, DNA/ethics , Trust/psychology , Adult , Americas , Asia , Australia , Europe , Female , Health Knowledge, Attitudes, Practice , High-Throughput Nucleotide Sequencing , Humans , Male , Public Health/ethics , Surveys and Questionnaires
7.
J Biol Chem ; 295(25): 8613-8627, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32393578

ABSTRACT

N-Methyl-d-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA-Seq, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.


Subject(s)
Membrane Glycoproteins/metabolism , Neuronal Plasticity/physiology , Transcription, Genetic , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium/metabolism , Cell Nucleus/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Female , Hippocampus/metabolism , MEF2 Transcription Factors/metabolism , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation , RNA Interference , RNA, Small Interfering/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Tetrodotoxin/pharmacology , Transcription, Genetic/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Mol Cell Neurosci ; 87: 4-17, 2018 03.
Article in English | MEDLINE | ID: mdl-29254825

ABSTRACT

The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF.


Subject(s)
Histone Demethylases/genetics , Histones/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Neurons/metabolism , Animals , Cytoplasmic Granules/metabolism , Gene Expression/genetics , Histones/metabolism , Humans
10.
Nature ; 550(7676): 343-344, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29019977
11.
J Neurophysiol ; 118(2): 755-770, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28490640

ABSTRACT

The wiring of synaptic connections in the developing mammalian brain is shaped by both intrinsic and extrinsic signals. One point where these regulatory pathways converge is via the sensory experience-dependent regulation of new gene transcription. Recent studies have elucidated a number of molecular mechanisms that allow nuclear transcription factors and chromatin regulatory proteins to encode aspects of specificity in experience-dependent synapse development. Here we review the evidence for the transcriptional mechanisms that sculpt activity-dependent aspects of synaptic connectivity during postnatal development and discuss how disruption of these processes is associated with aberrant brain development in autism and intellectual disability.


Subject(s)
Brain/growth & development , Brain/metabolism , Chromatin/metabolism , Synapses/metabolism , Transcription Factors/metabolism , Animals , Connectome , Humans , Neural Pathways/growth & development , Neural Pathways/metabolism , Transcription, Genetic/physiology
12.
J Neurosci ; 35(41): 13819-26, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26468181

ABSTRACT

Sprinkled throughout the genome are a million regulatory sequences called transcriptional enhancers that activate gene promoters in the right cells, at the right time. Enhancers endow the brain with its incredible diversity of cell types and also translate neural activity into gene induction. Thanks to rapid advances in genomic technologies, it is now possible to identify thousands of enhancers rapidly, test their transcriptional function en masse, and address their neurobiological functions via genome editing. Enhancers also promise to be a great technological opportunity for neuroscience, offering the potential for cell-type-specific genetic labeling and manipulation without the need for transgenesis. The objective of this review and the accompanying 2015 SfN mini-symposium is to highlight the use of new and emerging genomic technologies to probe enhancer function in the nervous system. SIGNIFICANCE STATEMENT: Transcriptional enhancers turn on genes in the right cells, at the right time. Enhancers are also the genomic sequences that encode the incredible diversity of cell types in the brain and enable the brain to turn genes on in response to new experiences. New technology enables enhancers to be found and manipulated. The study of enhancers promises to inform our understanding of brain development and function. The application of enhancer technology holds promise in accelerating basic neuroscience research and enabling gene therapies to be targeted to specific cell types in the brain.


Subject(s)
Central Nervous System/physiology , Enhancer Elements, Genetic/genetics , Genomics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Animals , Central Nervous System/cytology , Gene Expression/genetics , Humans , Models, Biological
13.
J Neurochem ; 137(2): 164-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826701

ABSTRACT

Neuronal activity sculpts brain development by inducing the transcription of genes such as brain-derived neurotrophic factor (Bdnf) that modulate the function of synapses. Sensory experience is transduced into changes in gene transcription via the activation of calcium signaling pathways downstream of both L-type voltage-gated calcium channels (L-VGCCs) and NMDA-type glutamate receptors (NMDARs). These signaling pathways converge on the regulation of transcription factors including calcium-response factor (CaRF). Although CaRF is dispensable for the transcriptional induction of Bdnf following the activation of L-VGCCs, here we show that the loss of CaRF leads to enhanced NMDAR-dependent transcription of Bdnf as well as Arc. We identify the NMDAR subunit-encoding gene Grin3a as a regulatory target of CaRF, and we show that expression of both Carf and Grin3a is depressed by the elevation of intracellular calcium, linking the function of this transcriptional regulatory pathway to neuronal activity. We find that light-dependent activation of Bdnf and Arc transcription is enhanced in the visual cortex of young CaRF knockout mice, suggesting a role for CaRF-dependent dampening of NMDAR-dependent transcription in the developing brain. Finally, we demonstrate that enhanced Bdnf expression in CaRF-lacking neurons increases inhibitory synapse formation. Taken together, these data reveal a novel role for CaRF as an upstream regulator of NMDAR-dependent gene transcription and synapse formation in the developing brain. NMDARs promote brain development by inducing the transcription of genes, including brain-derived neurotrophic factor (BDNF). We show that the transcription factor calcium-response factor (CaRF) limits NMDAR-dependent BDNF induction by regulating expression of the NMDAR subunit GluN3A. Loss of CaRF leads to enhanced BDNF-dependent GABAergic synapse formation indicating the importance of this process for brain development. Our observation that both CaRF and GluN3A are down-regulated by intracellular calcium suggests that this may be a mechanism for experience-dependent modulation of synapse formation.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Brain/growth & development , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental/physiology , Membrane Glycoproteins/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/genetics , Calcium Channel Blockers/pharmacology , Cells, Cultured , Disease Models, Animal , Embryo, Mammalian , Excitatory Amino Acid Antagonists/pharmacology , Female , Gene Expression Regulation, Developmental/drug effects , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/physiology , Tetrodotoxin/pharmacology , Transcription Factors/genetics , Valine/analogs & derivatives , Valine/pharmacology , Visual Cortex/metabolism
14.
Yale J Biol Med ; 89(4): 457-470, 2016 12.
Article in English | MEDLINE | ID: mdl-28018138

ABSTRACT

The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo, and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , Neurons/metabolism , Animals , Chromatin/genetics , Gene Editing , Humans , Mutation/genetics
15.
J Neurosci ; 34(13): 4519-27, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24671997

ABSTRACT

The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors.


Subject(s)
Central Nervous System Stimulants/pharmacology , Exploratory Behavior/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Neurons/drug effects , Amphetamine/pharmacology , Animals , Cocaine/administration & dosage , Corpus Striatum/cytology , Dopamine Uptake Inhibitors/administration & dosage , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , In Vitro Techniques , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Phosphorylation/physiology , Self Administration
16.
J Neurosci ; 34(2): 392-407, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24403140

ABSTRACT

A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.


Subject(s)
Dendrites/metabolism , Monomeric GTP-Binding Proteins/metabolism , Neuronal Plasticity/physiology , Signal Transduction/physiology , Animals , Calcium Channels, L-Type/metabolism , Electroporation , Female , Male , Mice , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome , Xenopus
17.
J Neurosci ; 34(3): 963-8, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431454

ABSTRACT

We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke.


Subject(s)
Antioxidants/physiology , Brain-Derived Neurotrophic Factor/physiology , Cardenolides/pharmacology , Glucose/deficiency , Neuroprotective Agents/pharmacology , Oxygen Consumption/physiology , Oxygen/metabolism , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , Female , Male , Nerium , Organ Culture Techniques , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
18.
Mol Cell Neurosci ; 61: 187-200, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24983519

ABSTRACT

Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine 27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic + 4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic + 4AP induced preconditioning of neuronal survival. Prior exposure to Bic + 4AP promoted neuronal survival in control neurons upon growth factor withdrawal; however, this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However, using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity.


Subject(s)
Hippocampus/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , Neurons/metabolism , Seizures/pathology , 4-Aminopyridine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Bicuculline/pharmacology , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Disease Models, Animal , GABA-A Receptor Antagonists/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Jumonji Domain-Containing Histone Demethylases/genetics , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/toxicity , Neurons/drug effects , Pilocarpine/toxicity , Potassium Channel Blockers/pharmacology , RNA Interference/physiology , Seizures/chemically induced
19.
Mol Ther ; 21(1): 18-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23011033

ABSTRACT

Typical Rett syndrome (RTT) is a pediatric disorder caused by loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. The demonstrated reversibility of RTT-like phenotypes in mice suggests that MECP2 gene replacement is a potential therapeutic option in patients. We report improvements in survival and phenotypic severity in Mecp2-null male mice after neonatal intracranial delivery of a single-stranded (ss) AAV9/chicken ß-actin (CBA)-MECP2 vector. Median survival was 16.6 weeks for MECP2-treated versus 9.3 weeks for green fluorescent protein (GFP)-treated mice. ssAAV9/CBA-MECP2-treated mice also showed significant improvement in the phenotype severity score, in locomotor function, and in exploratory activity, as well as a normalization of neuronal nuclear volume in transduced cells. Wild-type (WT) mice receiving neonatal injections of the same ssAAV9/CBA-MECP2 vector did not show any significant deficits, suggesting a tolerance for modest MeCP2 overexpression. To test a MECP2 gene replacement approach in a manner more relevant for human translation, a self-complementary (sc) adeno-associated virus (AAV) vector designed to drive MeCP2 expression from a fragment of the Mecp2 promoter was injected intravenously (IV) into juvenile (4-5 weeks old) Mecp2-null mice. While the brain transduction efficiency in juvenile mice was low (~2-4% of neurons), modest improvements in survival were still observed. These results support the concept of MECP2 gene therapy for RTT.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Mice, Knockout/physiology , Rett Syndrome/therapy , Survival Rate , Animals , Animals, Newborn , Brain/metabolism , Male , Mice , Mice, Knockout/genetics , Phenotype , Rett Syndrome/genetics
20.
PLoS Genet ; 7(9): e1002280, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21935354

ABSTRACT

Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (< 1,000 base pairs). We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing.


Subject(s)
DNA Mutational Analysis/methods , Genes, Synthetic , Genetic Variation , Genome-Wide Association Study/methods , Thrombophilia/genetics , Alleles , Base Sequence , Female , Genetic Predisposition to Disease , Genome, Human , Genotype , Haplotypes , Humans , Male , Pedigree , Reference Standards , Risk Assessment , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL