Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R191-R200, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29092861

ABSTRACT

We have reported that motivation for sucrose is increased in rats fed a moderate (31%) mixed-fat diet for 4-6 wk. In this study, rats were fed diets containing 32% stearic (STEAR) or palmitic (PALM) acid, and behavior, metabolic profile, and cell signals were compared with those of rats fed a matched low-fat diet (LF; 11% fat) diet. Rats fed STEAR or PALM increased sucrose motivation relative to LF rats (one-way ANOVA for lever presses; P = 0.03). Diet did not change fasting glucose, insulin, total cholesterol, triglycerides, intravenous glucose tolerance test glucose profile, percent body fat, or total kilocalories, although kilocalories as fat were increased (ANOVA, P < 0.05). Cell signals were assessed in rats ranked from high to low sucrose motivation. Diet did not alter Thr and Ser phosphorylation of Akt in the medial hypothalamus (HYP) and striatum (STR). However, Ser phosphorylation of GSK3Β was decreased in HYP and STR from both high- and low-performer tertiles of STEAR and PALM rats (ANOVA within each brain region, P < 0.05). Two histone 3 (H3) modifications were also assessed. Although there was no effect of diet on the transcription-repressive H3 modification, H3K27me3, the transcription-permissive H3 modification, H3K4me3, was significantly decreased in the HYP of high performers fed PALM or STEAR (ANOVA, P = 0.013). There was no effect of diet on H3K4me3 levels in HYP of low performers, or in STR. Our findings suggest signal-specific and brain region-specific effects of PALM or STEAR diets and may link downstream signaling effects of GSK3Β activity and H3 modifications with enhanced motivational behavior.


Subject(s)
Corpus Striatum/metabolism , Dietary Sucrose/administration & dosage , Feeding Behavior , Hypothalamus/metabolism , Motivation , Stearic Acids/administration & dosage , Animals , Diet, High-Fat , Dietary Sucrose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Histones/metabolism , Male , Methylation , Palmitic Acid/administration & dosage , Palmitic Acid/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Stearic Acids/metabolism
2.
Appetite ; 61(1): 19-29, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23023044

ABSTRACT

We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals.


Subject(s)
Diet, High-Fat , Dietary Fats/administration & dosage , Sucrose/administration & dosage , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Body Composition , Chromatography, High Pressure Liquid , Fasting , Glucose Tolerance Test , Hypothalamus/drug effects , Hypothalamus/metabolism , Immunohistochemistry , Male , Motivation/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL