Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848536

ABSTRACT

High-risk Ph-like ALL includes genomic rearrangement of the ABL1 and ABL2 genes (collectively ABL-rearranged, ABLr), and novel treatments are required. For the first time, we demonstrate asciminib efficacy in ABLr ALL, but only when the ABL SH3 domain is present.

2.
PLoS Genet ; 18(10): e1010300, 2022 10.
Article in English | MEDLINE | ID: mdl-36251721

ABSTRACT

RNA-sequencing (RNA-seq) efforts in acute lymphoblastic leukaemia (ALL) have identified numerous prognostically significant genomic alterations which can guide diagnostic risk stratification and treatment choices when detected early. However, integrating RNA-seq in a clinical setting requires rapid detection and accurate reporting of clinically relevant alterations. Here we present RaScALL, an implementation of the k-mer based variant detection tool km, capable of identifying more than 100 prognostically significant lesions observed in ALL, including gene fusions, single nucleotide variants and focal gene deletions. We compared genomic alterations detected by RaScALL and those reported by alignment-based de novo variant detection tools in a study cohort of 180 Australian patient samples. Results were validated using 100 patient samples from a published North American cohort. RaScALL demonstrated a high degree of accuracy for reporting subtype defining genomic alterations. Gene fusions, including difficult to detect fusions involving EPOR and DUX4, were accurately identified in 98% of reported cases in the study cohort (n = 164) and 95% of samples (n = 63) in the validation cohort. Pathogenic sequence variants were correctly identified in 75% of tested samples, including all cases involving subtype defining variants PAX5 p.P80R (n = 12) and IKZF1 p.N159Y (n = 4). Intragenic IKZF1 deletions resulting in aberrant transcript isoforms were also detectable with 98% accuracy. Importantly, the median analysis time for detection of all targeted alterations averaged 22 minutes per sample, significantly shorter than standard alignment-based approaches. The application of RaScALL enables rapid identification and reporting of previously identified genomic alterations of known clinical relevance.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA , Humans , RNA-Seq , Australia , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genomics/methods
3.
Blood ; 139(24): 3519-3531, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35192684

ABSTRACT

Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Aged , CDX2 Transcription Factor/genetics , Child , Chromatin , Female , Genomics/methods , Humans , Male , Middle Aged , Pol1 Transcription Initiation Complex Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Transcription Factors/genetics , Transcriptome , Young Adult
4.
Br J Haematol ; 203(2): 282-287, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37519213

ABSTRACT

Donor-derived haematological neoplasms, in which recipients present with haematological malignancies that have evolved from transplant donor stem cells, have previously been described for myelodysplastic syndrome, myeloproliferative neoplasms, acute myeloid leukaemia and less often, leukaemias of lymphoid origin. Here we describe a rare and complex case of donor-derived T-cell acute lymphoblastic leukaemia with a relatively short disease latency of less than 4 years. Through genomic and in vitro analyses, we identified novel mutations in NOTCH1 as well as a novel activating mutation in STAT5B; the latter targetable with the clinically available drugs, venetoclax and ruxolitinib.


Subject(s)
Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Siblings , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tissue Donors , T-Lymphocytes
5.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834962

ABSTRACT

Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.


Subject(s)
Azacitidine , Drug Resistance, Neoplasm , Equilibrative Nucleoside Transporter 1 , Leukemia, Myeloid, Acute , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Down-Regulation , Drug Resistance, Neoplasm/genetics , Equilibrative Nucleoside Transporter 1/drug effects , Equilibrative Nucleoside Transporter 1/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism
6.
Br J Cancer ; 127(5): 908-915, 2022 09.
Article in English | MEDLINE | ID: mdl-35650277

ABSTRACT

BACKGROUND: ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers. METHODS: Precise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines. RESULTS: ABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001). CONCLUSIONS: MRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Fusion Proteins, bcr-abl/genetics , Humans , Immunoglobulins , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Antigen, T-Cell/genetics
7.
Br J Haematol ; 197(1): 13-27, 2022 04.
Article in English | MEDLINE | ID: mdl-34747016

ABSTRACT

Acute lymphoblastic leukaemia (ALL) remains a leading cause of non-traumatic death in children, and the majority of adults diagnosed will succumb to the disease. Recent advances in molecular biology and bioinformatics have enabled more detailed genomic analysis and a better understanding of the molecular biology of ALL. A number of recurrent genomic drivers have recently been described, which not only aid in diagnosis and prognostication, but also may offer opportunities for specific therapeutic targeting. The present review summarises B-ALL genomic pathology at diagnosis, including lesions detectable using traditional cytogenetic methods as well as those detected only through advanced molecular techniques.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Genomics , Humans , Pathology, Molecular , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis
8.
Br J Haematol ; 196(3): 700-705, 2022 02.
Article in English | MEDLINE | ID: mdl-34697799

ABSTRACT

Rearrangements of Janus kinase 2 (JAK2r) form a subtype of acute lymphoblastic leukaemia (ALL) associated with poor patient outcomes. We present a high-risk case of B-cell ALL (B-ALL) where retrospective mRNA sequencing identified a novel GOLGA4-JAK2 fusion gene. Expression of GOLGA4-JAK2 in murine pro-B cells promoted factor-independent growth, implicating GOLGA4-JAK2 as an oncogenic driver. Cells expressing GOLGA4-JAK2 demonstrated constitutive activation of JAK/STAT signalling and were sensitive to JAK inhibitors. This study contributes to the diverse collection of JAK2 fusion genes identified in B-ALL and supports the incorporation of JAK inhibitors into treatment strategies to improve outcomes for this subtype.


Subject(s)
Autoantigens/genetics , Biomarkers, Tumor , Janus Kinase 2/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Biopsy , Bone Marrow/pathology , Cell Line, Tumor , Cell Survival/drug effects , DNA Mutational Analysis , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Gene Rearrangement , Genetic Predisposition to Disease , Humans , Male , Mice , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Prognosis , Protein Kinase Inhibitors , Signal Transduction
9.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562965

ABSTRACT

RNA sequencing provides a snapshot of the functional consequences of genomic lesions that drive acute lymphoblastic leukemia (ALL). The aims of this study were to elucidate diagnostic associations (via machine learning) between mRNA-seq profiles, independently verify ALL lesions and develop easy-to-interpret transcriptome-wide biomarkers for ALL subtyping in the clinical setting. A training dataset of 1279 ALL patients from six North American cohorts was used for developing machine learning models. Results were validated in 767 patients from Australia with a quality control dataset across 31 tissues from 1160 non-ALL donors. A novel batch correction method was introduced and applied to adjust for cohort differences. Out of 18,503 genes with usable expression, 11,830 (64%) were confounded by cohort effects and excluded. Six ALL subtypes (ETV6::RUNX1, KMT2A, DUX4, PAX5 P80R, TCF3::PBX1, ZNF384) that covered 32% of patients were robustly detected by mRNA-seq (positive predictive value ≥ 87%). Five other frequent subtypes (CRLF2, hypodiploid, hyperdiploid, PAX5 alterations and Ph-positive) were distinguishable in 40% of patients at lower accuracy (52% ≤ positive predictive value ≤ 73%). Based on these findings, we introduce the Allspice R package to predict ALL subtypes and driver genes from unadjusted mRNA-seq read counts as encountered in real-world settings. Two examples of Allspice applied to previously unseen ALL patient samples with atypical lesions are included.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA , Transcriptome
10.
Br J Haematol ; 193(1): 171-175, 2021 04.
Article in English | MEDLINE | ID: mdl-33620089

ABSTRACT

Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two-gene expression signature (CKLF and IL1B) that allowed identification of high-risk patients at diagnosis. This two-gene expression signature enhances the predictive value of current at diagnosis or end-of-induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk-adapted therapies.


Subject(s)
Chemokines/genetics , Interleukin-1beta/genetics , MARVEL Domain-Containing Proteins/genetics , Machine Learning/statistics & numerical data , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acute Disease , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Predictive Value of Tests , Recurrence , Risk Assessment/standards , Survival Analysis , Transcriptome/genetics , Treatment Failure
11.
Anticancer Drugs ; 32(5): 526-536, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33587350

ABSTRACT

The resistance of chronic myeloid leukaemia (CML) to tyrosine kinase inhibitors (TKIs) remains a significant clinical problem. Targeting alternative pathways, such as protein prenylation, is known to be effective in overcoming resistance. Simvastatin inhibits 3-hydroxy-3-methylglutaryl-CoA reductase (a key enzyme in isoprenoid-regulation), thereby inhibiting prenylation. We demonstrate that simvastatin alone effectively inhibits proliferation in a panel of TKI-resistant CML cell lines, regardless of mechanism of resistance. We further show that the combination of nilotinib and simvastatin synergistically kills CML cells via an increase in apoptosis and decrease in prosurvival proteins and cellular proliferation. Mechanistically, simvastatin inhibits protein prenylation as shown by increased levels of unprenylated Ras and rescue experiments with mevalonate resulted in abrogation of synergism. The combination also leads to an increase in the intracellular uptake and retention of radio-labelled nilotinib, which further enhances the inhibition of Bcr-Abl kinase activity. In primary CML samples, this combination inhibits clonogenicity in both imatinib-naive and resistant cells. Such combinatorial effects provide the basis for utilising these Food and Drug Administration-approved drugs as a potential clinical approach in overcoming resistance and improving CML treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Pyrimidines/pharmacology , Simvastatin/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Combinations , Drug Resistance, Neoplasm/physiology , Mice , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Simvastatin/administration & dosage
12.
Pediatr Blood Cancer ; 68(5): e28922, 2021 05.
Article in English | MEDLINE | ID: mdl-33638292

ABSTRACT

We report on the Australian experience of blinatumomab for treatment of 24 children with relapsed/refractory precursor B-cell acute lymphoblastic leukaemia (B-ALL) and high-risk genetics, resulting in a minimal residual disease (MRD) response rate of 58%, 2-year progression-free survival (PFS) of 39% and 2-year overall survival of 63%. In total, 83% (n = 20/24) proceeded to haematopoietic stem cell transplant, directly after blinatumomab (n = 12) or following additional salvage therapy (n = 8). Four patients successfully received CD19-directed chimeric antigen receptor T-cell therapy despite prior blinatumomab exposure. Inferior 2-year PFS was associated with MRD positivity (20%, n = 15) and in KMT2A-rearranged infants (15%, n = 9). Our findings highlight that not all children with relapsed/refractory B-ALL respond to blinatumomab and factors such as blast genotype may affect prognosis.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Australia , Child , Female , Humans , Male , Neoplasm Recurrence, Local/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Retrospective Studies , Treatment Outcome
13.
Article in English | MEDLINE | ID: mdl-32720323

ABSTRACT

Rearrangements of the MLLT10 gene occur in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), most commonly T-lineage ALL (T-ALL), in patients of all ages. MLLT10 rearranged (MLLT10r) acute leukemia presents a complex diagnostic and therapeutic challenge due to frequent presentation of immature or mixed phenotype, and a lack of consensus regarding optimal therapy. Cases of MLLT10r AML or T-ALL bearing immature phenotype are at high risk of poor outcome, but the underlying molecular mechanisms and sensitivity to targeted therapies remain poorly characterized. This review addresses the incidence and prognostic significance of MLLT10r in acute leukemia, and how the aberrant gene expression profile of this disease can inform potential targeted therapeutic strategies. Understanding the underlying genomics of MLLT10r acute leukemia, both clinically and molecularly, will improve prognostic stratification and accelerate the development of targeted therapeutic strategies, to improve patient outcomes.

14.
Br J Cancer ; 122(4): 455-464, 2020 02.
Article in English | MEDLINE | ID: mdl-31792348

ABSTRACT

Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual's mutational profile, might improve outcomes and lower a patient's risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.


Subject(s)
Carcinogenesis/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Drug Resistance, Neoplasm/genetics , Humans
15.
Br J Haematol ; 191(3): 433-441, 2020 11.
Article in English | MEDLINE | ID: mdl-32352166

ABSTRACT

There is currently no biomarker that reliably predicts treatment-free remission (TFR) in chronic myeloid leukaemia (CML). We characterised effector and suppressor immune responses at the time of tyrosine kinase inhibitor (TKI) cessation in patients from the CML8 and CML10 clinical studies. Natural killer (NK) cells with increased expression of activating NK receptors were higher in patients who achieved TFR. There was no difference in the proportion of CD4+ or CD8+ T cells. Furthermore, we found that FoxP3+ regulatory T cells (T reg) and monocytic myeloid-derived suppressor cells (Mo-MDSCs) were concomitantly decreased in TFR patients, suggesting that the effector and suppressor arms of the immune system work in concert to mediate TFR. A discovery cohort (CML10) was used to generate a predictive model, using logistic regression. Patients classified into the high-risk group were more likely to relapse when compared with the low-risk group (HR 7·4, 95% CI 2·9-19·1). The model was successfully validated on the independent CML8 cohort (HR 8·3, 95% CI 2·2-31·3). Effective prediction of TFR success may be obtained with an effector-suppressor score, calculated using absolute NK cell, T reg, and Mo-MDSC counts, at TKI cessation, reflecting the contribution of both immune suppressors and effectors in the immunobiology underlying successful TFR.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers , Female , Humans , Immunomodulation/drug effects , Killer Cells, Natural/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukocyte Count , Male , Middle Aged , Myeloid-Derived Suppressor Cells/drug effects , Prognosis , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Receptors, Natural Killer Cell/genetics , Receptors, Natural Killer Cell/metabolism , Recurrence , Remission Induction , Treatment Outcome
16.
Blood ; 132(9): 948-961, 2018 08 30.
Article in English | MEDLINE | ID: mdl-29967129

ABSTRACT

Genomic events associated with poor outcome in chronic myeloid leukemia (CML) are poorly understood. We performed whole-exome sequencing, copy-number variation, and/or RNA sequencing for 65 patients to discover mutations at diagnosis and blast crisis (BC). Forty-six patients with chronic-phase disease with the extremes of outcome were studied at diagnosis. Cancer gene variants were detected in 15 (56%) of 27 patients with subsequent BC or poor outcome and in 3 (16%) of 19 optimal responders (P = .007). Frequently mutated genes at diagnosis were ASXL1, IKZF1, and RUNX1 The methyltransferase SETD1B was a novel recurrently mutated gene. A novel class of variant associated with the Philadelphia (Ph) translocation was detected at diagnosis in 11 (24%) of 46 patients comprising fusions and/or rearrangement of genes on the translocated chromosomes, with evidence of fragmentation, inversion, and imperfect sequence reassembly. These were more frequent at diagnosis in patients with poor outcome: 9 (33%) of 27 vs 2 (11%) of 19 optimal responders (P = .07). Thirty-nine patients were tested at BC, and all had cancer gene variants, including ABL1 kinase domain mutations in 58%. However, ABL1 mutations cooccurred with other mutated cancer genes in 89% of cases, and these predated ABL1 mutations in 62% of evaluable patients. Gene fusions not associated with the Ph translocation occurred in 42% of patients at BC and commonly involved fusion partners that were known cancer genes (78%). Genomic analysis revealed numerous relevant variants at diagnosis in patients with poor outcome and all patients at BC. Future refined biomarker testing of specific variants will likely provide prognostic information to facilitate a risk-adapted therapeutic approach.


Subject(s)
Biomarkers, Tumor/genetics , Genomics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Neoplasm Proteins/genetics , Philadelphia Chromosome , Translocation, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Follow-Up Studies , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Male , Middle Aged , Risk Factors , Survival Rate
17.
Blood ; 129(9): 1166-1176, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28049640

ABSTRACT

Immunological control may contribute to achievement of deep molecular response in chronic myeloid leukemia (CML) patients on tyrosine kinase inhibitor (TKI) therapy and may promote treatment-free remission (TFR). We investigated effector and suppressor immune responses in CML patients at diagnosis (n = 21), on TKI (imatinib, nilotinib, dasatinib) before achieving major molecular response (pre-MMR, BCR-ABL1 >0.1%, n = 8), MMR (BCR-ABL1 ≤0.1%, n = 20), molecular response4.5 (MR4.5, BCR-ABL1 ≤0.0032%, n = 16), and sustained TFR (BCR-ABL1 undetectable following cessation of TKI therapy, n = 13). Aberrant immune-inhibitory responses (myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and programmed death-1 (PD-1) inhibitory molecule expression on CD4+/CD8+ T cells were increased in CML patients at diagnosis. Consequent quantitative and functional defects of innate effector natural killer (NK) cells and cytotoxic T-lymphocyte responses to leukemia-associated antigens WT1, BMI-1, PR3, and PRAME were observed at diagnosis. Treg and PD-1+CD4+/CD8+ T cells persisted in pre-MMR CML patients on TKI. Patients in MMR and MR4.5 had a more mature, cytolytic CD57+CD62L- NK cell phenotype, consistent with restoration of NK cell activating and inhibitory receptor repertoire to normal healthy donor levels. Immune responses were retained in TFR patients off-therapy, suggesting the restored immune control observed in MMR and MR4.5 is not an entirely TKI-mediated effect. Maximal restoration of immune responses occurred only in MR4.5, as demonstrated by increased NK cell and effector T-cell cytolytic function, reduced T-cell PD-1 expression and reduced numbers of monocytic MDSCs.


Subject(s)
Drug Resistance, Neoplasm/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Dasatinib/therapeutic use , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , Humans , Imatinib Mesylate/therapeutic use , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , Middle Aged , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/biosynthesis , Pyrimidines/therapeutic use , Remission Induction
18.
Br J Cancer ; 118(7): 1000-1004, 2018 04.
Article in English | MEDLINE | ID: mdl-29531323

ABSTRACT

BACKGROUND: Zinc-finger protein 384 (ZNF384) fusions are an emerging subtype of precursor B-cell acute lymphoblastic leukaemia (pre-B-ALL) and here we further characterised their prevalence, survival outcomes and transcriptome. METHODS: Bone marrow mononuclear cells from 274 BCR-ABL1-negative pre-B-ALL patients were immunophenotyped and transcriptome molecularly characterised. Transcriptomic data was analysed by principal component analysis and gene-set enrichment analysis to identify gene and pathway expression changes. RESULTS: We exclusively detect E1A-associated protein p300 (EP300)-ZNF384 in 5.7% of BCR-ABL1-negative adolescent/young adult (AYA)/adult pre-B-ALL patients. EP300-ZNF384 patients do not appear to be a high-risk subgroup. Transcriptomic analysis revealed that EP300-ZNF384 samples have a distinct gene expression profile that results in the up-regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and cell adhesion pathways and down-regulation of cell cycle and DNA repair pathways. CONCLUSIONS: Importantly, this report contributes to a better overview of the incidence of EP300-ZNF384 patients and show that they have a distinct gene signature with concurrent up-regulation of JAK-STAT pathway, reduced expression of B-cell regulators and reduced DNA repair capacity.


Subject(s)
E1A-Associated p300 Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Trans-Activators/genetics , Transcriptome , Adolescent , Adult , Child , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Gene Frequency , Genes, abl/genetics , Humans , Janus Kinases/metabolism , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence , STAT Transcription Factors/metabolism , Signal Transduction/genetics , Survival Analysis , Young Adult
19.
Haematologica ; 103(12): 2026-2032, 2018 12.
Article in English | MEDLINE | ID: mdl-29976745

ABSTRACT

Accurate quantification of minimal residual disease (MRD) during treatment of chronic myeloid leukemia (CML) guides clinical decisions. The conventional MRD method, RQ-PCR for BCR-ABL1 mRNA, reflects a composite of the number of circulating leukemic cells and the BCR-ABL1 transcripts per cell. BCR-ABL1 genomic DNA only reflects leukemic cell number. We used both methods in parallel to determine the relative contribution of the leukemic cell number to molecular response. BCR-ABL1 DNA PCR and RQ-PCR were monitored up to 24 months in 516 paired samples from 59 newly-diagnosed patients treated with first-line imatinib in the TIDEL-II study. In the first three months of treatment, BCR-ABL1 mRNA values declined more rapidly than DNA. By six months, the two measures aligned closely. The expression of BCR-ABL1 mRNA was normalized to cell number to generate an expression ratio. The expression of e13a2 BCR-ABL1 was lower than that of e14a2 transcripts at multiple time points during treatment. BCR-ABL1 DNA was quantifiable in 48% of samples with undetectable BCR-ABL1 mRNA, resulting in MRD being quantifiable for an additional 5-18 months (median 12 months). These parallel studies show for the first time that the rapid decline in BCR-ABL1 mRNA over the first three months of treatment is due to a reduction in both cell number and transcript level per cell, whereas beyond three months, falling levels of BCR-ABL1 mRNA are proportional to the depletion of leukemic cells.


Subject(s)
DNA, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Kinetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Polymerase Chain Reaction/methods , Protein Kinase Inhibitors/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL