Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Dairy Sci ; 107(6): 3847-3862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38216045

ABSTRACT

Our objectives were to (1) evaluate cows' preferences for visiting feed bins limited to either same- versus mixed-parity social interactions, depending on their parity; (2) examine the effect of parity and bin social dynamic type on competition behavior and feeding patterns, and (3) investigate cow-level relationships between feed bunk competition behavior, feeding patterns, and feed efficiency. Twenty-eight primiparous and 28 multiparous (2.4 ± 0.6 lactations) lactating Holstein cows (127.8 ± 30.1 and 145.3. ± 10.4 DIM, respectively) were housed in a freestall pen with 28 roughage intake control bins (2:1 stocking density). Each cow was assigned to 2 bins, including 1 shared with 3 other cows of the same parity (SM) and 1 with 3 cows of mixed parities (MX, 50% primiparous and 50% multiparous). Feed bunk competition was recorded via video in the first hour after morning feed delivery for 2 d, and feeding patterns were recorded from 24-h roughage intake control data. Residual feed intake was calculated as the difference between predicted and observed dry matter intake after accounting for known energy sinks. Based on the first visit to the feed bunk after fresh feed delivery, multiparous cows tended to prefer the MX bin compared with the SM one; cows showed no other overall preference for bin type based on number of visits. Over time, multiparous cows remained consistent in their magnitude of preference for visiting each bin type, but involvement in competition was not consistent over time. Primiparous cows tended to be involved in more total competitive contacts and ate faster at the SM bin compared with the MX one. Those primiparous cows who visited the SM bin more often within the first hour after morning feed delivery tended to be less feed efficient. Multiparous cows initiated more successful replacements after a displacement at the MX versus SM bin, with no difference in feeding patterns between bin types. Regardless of parity or bin type, visiting the bunk sooner after feed delivery was correlated with involvement in more competitive interactions and more time eating within the first 30 min. Consuming more feed during a longer first visit to the bunk after fresh feed delivery was correlated with being less feed efficient. Overall, when given the choice of feeding from bins shared with cows of the same or mixed parities at a 2:1 stocking density, primiparous cows showed differences in behavior between those bin types, with implications for feed efficiency; these effects are perhaps an unintended consequence of compensatory strategies to avoid direct competition with multiparous cows.


Subject(s)
Animal Feed , Feeding Behavior , Parity , Animals , Cattle , Female , Lactation , Pregnancy , Diet/veterinary
2.
J Dairy Sci ; 107(2): 1054-1067, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37769947

ABSTRACT

Resilience can be defined as the capacity to maintain performance or bounce back to normal functioning after a perturbation, and studying fluctuations in daily feed intake may be an effective way to identify resilient dairy cows. Our goal was to develop new phenotypes based on daily dry matter intake (DMI) consistency in Holstein cows, estimate genetic parameters and genetic correlations with feed efficiency and milk yield consistency, and evaluate their relationships with production, longevity, health, and reproduction traits. Data consisted of 397,334 daily DMI records of 6,238 lactating Holstein cows collected from 2007 to 2022 at 6 research stations across the United States. Consistency phenotypes were calculated based on the deviations from expected daily DMI for individual cows during their respective feeding trials, which ranged from 27 to 151 d in duration. Expected values were derived from different models, including simple average, quadratic and cubic quantile regression with a 0.5 quantile, and locally estimated scatterplot smoothing (LOESS) regression with span parameters 0.5 and 0.7. We then calculated the log of variance (log-Var-DMI) of daily deviations for each model as the consistency phenotype. Consistency of milk yield was also calculated, as a reference, using the same methods (log-Var-Milk). Genetic parameters were estimated using an animal model, including lactation, days in milk and cohort as fixed effects, and animal as random effect. Relationships between log-Var-DMI and traits currently considered in the US national genetic evaluation were evaluated using Spearman's rank correlations between sires' breeding values. Heritability estimates for log-Var-DMI ranged from 0.11 ± 0.02 to 0.14 ± 0.02 across models. Different methods (simple average, quantile regressions, and LOESS regressions) used to calculate log-Var-DMI yielded very similar results, with genetic correlations ranging from 0.94 to 0.99. Estimated genetic correlations between log-Var-DMI and log-Var-Milk ranged from 0.51 to 0.62. Estimated genetic correlations between log-Var-DMI and feed efficiency ranged from 0.55 to 0.60 with secreted milk energy, from 0.59 to 0.63 with metabolic body weight, and from 0.26 to 0.31 with residual feed intake (RFI). Relationships between log-Var-DMI and the traits in the national genetic evaluation were moderate and positive correlations with milk yield (0.20 to 0.21), moderate and negative correlations with female fertility (-0.07 to -0.20), no significant correlations with health and longevity, and favorable correlations with feed efficiency (-0.23 to -0.25 with feed saved and 0.21 to 0.26 with RFI). We concluded that DMI consistency is heritable and may be an indicator of resilience. Cows with lower variation in the difference between actual and expected daily DMI (more consistency) may be more effective in maintaining performance in the face of challenges or perturbations, whereas cows with greater variation in observed versus expected daily DMI (less consistency) are less feed efficient and may be less resilient.


Subject(s)
Lactation , Milk , Humans , Cattle/genetics , Female , Animals , Lactation/genetics , Milk/metabolism , Eating/genetics , Breeding , Body Weight/genetics , Animal Feed
3.
J Dairy Sci ; 107(9): 7009-7021, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754817

ABSTRACT

Large datasets allow estimation of feed required for individual milk components or body maintenance. Phenotypic regressions are useful for nutrition management, but genetic regressions are more useful in breeding programs. Dry matter intake records from 8,513 lactations of 6,621 Holstein cows were predicted from phenotypes or genomic evaluations for milk components and body size traits. The mixed models also included DIM, age-parity subclass, trial date, management group, and BW change during 28- and 42-d feeding trials in mid lactation. Phenotypic regressions of DMI on milk (0.014 ± 0.006), fat (3.06 ± 0.01), and protein (4.79 ± 0.25) were much less than corresponding genomic regressions (0.08 ± 0.03, 11.30 ± 0.47, and 9.35 ± 0.87, respectively) or sire genomic regressions multiplied by 2 (0.048 ± 0.04, 6.73 ± 0.94, and 4.98 ± 1.75). Thus, marginal feed costs as fractions of marginal milk revenue were higher from genetic than phenotypic regressions. According to the ECM formula, fat production requires 69% more DMI than protein production. In the phenotypic regression, it was estimated that protein production requires 56% more DMI than fat. However, the genomic regression for the animal showed a difference of only 21% more DMI for protein compared with fat, whereas the sire genomic regressions indicated approximately 35% more DMI for fat than protein. Estimates of annual maintenance in kilograms DMI/kilograms BW per lactation were similar from phenotypic regression (5.9 ± 0.14), genomic regression (5.8 ± 0.31), and sire genomic regression multiplied by 2 (5.3 ± 0.55) and are larger than those estimated by the National Academies for Science, Engineering, and Medicine based on NEL equations. Multiple regressions on genomic evaluations for the 5 type traits in body weight composite (BWC) showed that strength was the type trait most associated with BW and DMI, agreeing with the current BWC formula, whereas other traits were less useful predictors, especially for DMI. The Net Merit formula used to weight different genetic traits to achieve an economically optimal overall selection response was revised in 2021 to better account for these estimated regressions. To improve profitability, breeding programs should select smaller cows with negative residual feed intake that produce more milk, fat, and protein.


Subject(s)
Body Weight , Lactation , Milk , Phenotype , Animals , Cattle/genetics , Female , Milk/chemistry , Genomics , Diet/veterinary , Eating/genetics , Breeding , Animal Feed
4.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825121

ABSTRACT

The evaluation of dairy cow feed efficiency using residual feed intake accounts for known energy sinks. However, behavioral traits may also contribute to the variation in feed efficiency. Our objective was to estimate the heritability and repeatability of behavioral traits and their genetic correlations with feed efficiency and its components in lactating Holstein cows. The first data set consisted of 36,075 daily rumination and lying time records collected using a SMARTBOW ear tag accelerometer (Zoetis, Parsippany, NJ) and 6,371 weekly feed efficiency records of 728 cows from the University of Wisconsin-Madison. The second data set consisted of 59,155 daily activity records, measured as number of steps, recorded by pedometers (AfiAct; S.A.E. Afikim, Kibbutz Afikim, Israel), and 8,626 weekly feed efficiency records of 635 cows from the University of Florida. Feed efficiency and its components included dry matter intake, change in body weight, metabolic body weight, secreted milk energy, and residual feed intake. The statistical models included the fixed effect of cohort, lactation number, and days in milk, and the random effects of animal and permanent environment. Heritability estimates for behavioral traits using daily records were 0.19 ± 0.06 for rumination and activity, and 0.37 ± 0.07 for lying time. Repeatability estimates for behavioral traits using daily data ranged from 0.56 ± 0.02 for activity to 0.62 ± 0.01 for lying time. Both heritability and repeatability estimates were larger when weekly records instead of daily records were used. Rumination and activity had positive genetic correlations with residual feed intake (0.40 ± 0.19 and 0.31 ± 0.22, respectively) while lying time had a negative genetic correlation with this residual feed intake (-0.27 ± 0.11). These results indicate that more efficient cows tend to spend more time lying and less time active. Additionally, less efficient cows tend to eat more and therefore also tend to ruminate longer. Overall, sensor-based behavioral traits are heritable and genetically correlated with feed efficiency and its components and, therefore, they could be used as indicators to identify feed efficient cows within the herd.

5.
J Dairy Sci ; 106(12): 9410-9425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641318

ABSTRACT

Social dynamics in group-housed animals can have important effects on their welfare, feed efficiency, and production potential. Our objectives were to: (1) evaluate the effects of parity and social grouping on competition behavior, feeding patterns, and feed efficiency, and (2) investigate cow-level relationships between competition and feeding behavior, production, and feed efficiency. Fifty-nine Holstein cows (144.5 ± 21.8 starting days in milk, mean ± SD) were housed in a freestall pen with 30 Roughage Intake Control (RIC) bins. We evaluated the effects of parity (primiparous [PR, n = 29] vs. multiparous [MU, n = 30]) and group composition at the feed bunk (same-parity [SM, n = 39] vs. mixed-parity [MX, n = 20, 50% of each parity]) with a 2 × 2 factorial design (SM-MU: n = 20; SM-PR: n = 19; MX-MU: n = 10; MX-PR: n = 10) on competition behavior, feeding patterns, and feed efficiency. Within the pen, groups of 9 to 10 cows were considered subgroups and assigned to treatments defined by sets of 5 assigned bins (2:1 stocking density). Feed bunk competition and feeding patterns were recorded via continuous video in the first hour after morning feed delivery and 24-h RIC data, respectively. Residual feed intake (RFI) was calculated as the difference between predicted and observed dry matter intake (DMI) after accounting for known energy sinks. Linear models were used to evaluate the effects and interactions of parity and group composition on competition, feeding behavior, and feed efficiency. Within-cow correlations were performed between competition, feeding behavior, and RFI. Cows in MX, compared with SM, were involved in more competitive interactions [mean (95% CI): competitive contacts: 11.5 (8.1, 16.3) vs. 7.2 (5.5, 9.3) events; displacements: 4.0 (3.0, 5.3) vs. 2.1 (1.7, 2.7) events, and replacements: 3.5 (2.6, 4.7) vs. 1.9 (1.5, 2.5) events]. Cows in MX vs. those in SM had more bunk visits/meal ( 4.3 [3.9, 4.8] vs. 3.7 [3.4, 3.9] visits/meal) and longer meals (31.2 vs. 27.4 ± 0.9 min/meal) and tended to have higher RFI (0.41 ± 0.3 vs. -0.21 ± 0.2) and were therefore less feed efficient. Multiparous versus PR cows had greater DMI per day (29.3 ± 0.6 vs. 25.5 ± 0.4 kg/d) and per meal (4.2 [4.0, 4.4] vs. 3.4 [3.2, 3.6] kg/meal), faster eating rates (0.14 [0.13, 0.15] vs. 0.12 [0.11, 0.13] kg/min), and fewer bunk visits/d (26.6 [24.0, 29.4] vs. 32.8 [29.7, 35.9]). Regardless of grouping or parity, cows with shorter latencies to first visit the bunk after feed delivery were involved in more competition and tended to be less feed efficient. Overall, individual cow- and group-level relationships among competition, feeding behavior, and feed efficiency play an important role in feed bunk social dynamics. At a competitive 2:1 stocking density, mixed-parity groups for lactating cows may have potentially negative animal welfare and feed efficiency implications that should be considered when selecting grouping strategies on the farm.


Subject(s)
Lactation , Social Interaction , Pregnancy , Female , Cattle , Animals , Dairying , Milk , Feeding Behavior , Animal Feed , Diet/veterinary
6.
J Dairy Sci ; 105(9): 7564-7574, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35863925

ABSTRACT

Residual feed intake (RFI) is commonly used to measure feed efficiency but individual intake recording systems are needed. Feeding behavior may be used as an indicator trait for feed efficiency using less expensive precision livestock farming technologies. Our goal was to estimate genetic parameters for feeding behavior and the genetic correlations with feed efficiency in Holstein cows. Data consisted of 75,877 daily feeding behavior records of 1,328 mid-lactation Holstein cows in 31 experiments conducted from 2009 to 2020 with an automated intake recording system. Feeding behavior traits included number of feeder visits per day, number of meals per day, duration of each feeder visit, duration of each meal, total duration of feeder visits, intake per visit, intake per meal [kg of dry matter (DM)], feeding rate per visit, and feeding rate per meal (kg of DM per min). The meal criterion was estimated as 26.4 min, which means that any pair of feeder visits separated by less than 26.4 min were considered part of the same meal. The statistical model included lactation and days in milk as fixed effects, and experiment-treatment, animal, and permanent environment as random effects. Genetic parameters for feeding behavior traits were estimated using daily records and weekly averages. Estimates of heritability for daily feeding behavior traits ranged from 0.09 ± 0.02 (number of meals; mean ± standard error) to 0.23 ± 0.03 (feeding rate per meal), with repeatability estimates ranging from 0.23 ± 0.01 (number of meals) to 0.52 ± 0.02 (number of feeder visits). Estimates of heritability for weekly averages of feeding behavior traits ranged from 0.19 ± 0.04 (number of meals) to 0.32 ± 0.04 (feeding rate per visit), with repeatability estimates ranging from 0.46 ± 0.02 (duration of each meal) to 0.62 ± 0.02 (feeding rate per visit and per meal). Most of the feeding behavior measures were strongly genetically correlated, showing that with more visits or meals per day, cows spend less time in each feeder visit or meal with lower intake per visit or meal. Weekly averages for feeding behavior traits were analyzed jointly with RFI and its components. Number of meals was genetically correlated with milk energy (0.48), metabolic body weight (-0.27), and RFI (0.19). Duration of each feeder visit and meal were genetically correlated with milk energy (0.43 and 0.44, respectively). Total duration of feeder visits per day was genetically correlated with DM intake (0.29), milk energy (0.62), metabolic body weight (-0.37), and RFI (0.20). Intake per visit and meal were genetically correlated with DM intake (0.63 and 0.87), milk energy (0.47 and 0.69), metabolic body weight (0.47 and 0.68), and RFI (0.31 and 0.65). Feeding rate was genetically correlated with DM intake (0.69), metabolic body weight (0.67), RFI (0.47), and milk energy (0.21). We conclude that measures of feeding behavior could be useful indicators of dairy cow feed efficiency, and individual cows that eat at a slower rate may be more feed efficient.


Subject(s)
Animal Feed , Diet , Animal Feed/analysis , Animals , Body Weight , Cattle/genetics , Diet/veterinary , Eating/genetics , Feeding Behavior , Female , Lactation/genetics , Milk/metabolism
7.
Physiol Genomics ; 52(8): 347-357, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32628084

ABSTRACT

Hyperketonemia (HYK) is a metabolic disorder that affects early postpartum dairy cows; however, there has been limited success in identifying genomic variants contributing to HYK susceptibility. We conducted a genome-wide association study (GWAS) using HYK phenotypes based on an intensive screening protocol, interrogated genotype interactions with parity group (GWIS), and evaluated the enrichment of annotated metabolic pathways. Holstein cows were enrolled into the experiment after parturition, and blood samples were collected at four timepoints between 5 and 18 days postpartum. Concentration of blood ß-hydroxybutyrate (BHB) was quantified cow-side via a handheld BHB meter. Cows were labeled as a HYK case when at least one blood sample had BHB ≥ 1.2 mmol/L, and all other cows were considered non-HYK controls. After quality control procedures, 1,710 cows and 58,699 genotypes were available for further analysis. The GWAS and GWIS were performed using the forward feature select linear mixed model method. There was evidence for an association between ARS-BFGL-NGS-91238 and HYK susceptibility, as well as parity-dependent associations to HYK for BovineHD0600024247 and BovineHD1400023753. Candidate genes annotated to these single nuclear polymorphism associations have been previously associated with obesity, diabetes, insulin resistance, and fatty liver in humans and rodent models. Enrichment analysis revealed focal adhesion and axon guidance as metabolic pathways contributing to HYK etiology, while genetic variation in pathways related to insulin secretion and sensitivity may affect HYK susceptibility in a parity-dependent matter. In conclusion, the present work proposes several novel marker associations and metabolic pathways contributing to genetic risk for HYK susceptibility.


Subject(s)
3-Hydroxybutyric Acid/blood , Cattle Diseases/genetics , Genes , Ketosis/genetics , Ketosis/veterinary , Polymorphism, Single Nucleotide , Animals , Cattle , Cattle Diseases/blood , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Ketosis/blood , Lactation/blood , Lactation/genetics , Linear Models , Metabolic Networks and Pathways/genetics , Parity/genetics , Phenotype , Postpartum Period , Pregnancy
8.
J Dairy Sci ; 102(1): 866-870, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30391174

ABSTRACT

The d-isomer of Met cannot be used directly by the mammary gland in dairy cows; instead, it is transformed into l-Met, the proteogenic isomer, in the liver and other extramammary tissues. It remains unclear whether different Met forms and a Met hydroxy analog, 2-hydroxy-4-(methylthio)butanoic acid (HMB), are metabolized and function similarly in the liver. The objective of the present study was to examine the regulation of key genes in Met regeneration, transulfuration, and transmethylation pathways in response to increasing doses of different Met forms. Hepatocytes isolated from 4 calves between 4 and 7 d old were maintained as monolayer cultures for 24 h before addition of treatments. Treatments of (0, 10, 20, 40 µM) d-Met, l-Met, dl-Met, dl-HMB, or a 1:1 mixture of dl-Met and dl-HMB were added to Met-free medium in triplicate. After 24 h, cell lysates were collected for quantification of gene expression by quantitative PCR, and mRNA abundance was normalized to the mean of 3 reference genes. Data were analyzed with PROC MIXED of SAS 9.3 (SAS Institute Inc., Cary, NC). Analyses of covariance confirmed equivalent slopes of Met form, and the final model included form, dose, and random effect of calf within form. Data are reported as least squares means ± standard error. No main effect of Met form was observed for any genes examined. The enzymes encoded by betaine-homocysteine methyltransferase (BHMT) and 5-methyltetrahydrofolate-homocysteine methyltransferase use betaine and 5-methyltetrahydrofolate, respectively, to regenerate Met from homocysteine. Increasing concentration of Met did not alter 5-methyltetrahydrofolate expression, but decreased BHMT expression. Expression of glycine N-methyltransferase, the enzyme that controls transmethylation flux from S-adenosyl-methionine, was not affected by Met concentration. Methionine concentration had no effect on expression of cystathionine ß-synthase, a key enzyme for the transulfuration pathway. The decrease in BHMT expression indicates a decreased need for cellular Met regeneration with increasing Met concentration, independent of Met form. The lack of differences among Met forms on regulating genes examined indicates that all Met forms similarly reduced genes controlling Met regeneration and metabolism in primary bovine hepatocytes.


Subject(s)
Butyric Acid/metabolism , Cattle/genetics , Hepatocytes/metabolism , Methionine/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Animals , Animals, Newborn , Betaine/pharmacology , Betaine-Homocysteine S-Methyltransferase/genetics , Betaine-Homocysteine S-Methyltransferase/metabolism , Butyric Acid/chemistry , Cattle/metabolism , Cells, Cultured , Female , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/metabolism , Hepatocytes/enzymology , Liver/cytology , Liver/enzymology , Liver/metabolism , Methionine/chemistry , S-Adenosylmethionine/metabolism
9.
Br J Nutr ; 118(12): 1043-1051, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29179781

ABSTRACT

The anti-inflammatory mechanisms of low-fat dairy product consumption are largely unknown. The objective of this study was to determine whether low-fat yogurt reduces biomarkers of chronic inflammation and endotoxin exposure in women. Premenopausal women (BMI 18·5-27 and 30-40 kg/m2) were randomised to consume 339 g of low-fat yogurt (yogurt non-obese (YN); yogurt obese (YO)) or 324 g of soya pudding (control non-obese; control obese (CO)) daily for 9 weeks (n 30/group). Fasting blood samples were analysed for IL-6, TNF-α/soluble TNF II (sTNF-RII), high-sensitivity C-reactive protein, 2-arachidonoyl glycerol, anandamide, monocyte gene expression, soluble CD14 (sCD14), lipopolysaccharide (LPS), LPS binding protein (LBP), IgM endotoxin-core antibody (IgM EndoCAb), and zonulin. BMI, waist circumference and blood pressure were also determined. After 9-week yogurt consumption, YO and YN had decreased TNF-α/sTNFR-RII. Yogurt consumption increased plasma IgM EndoCAb regardless of obesity status. sCD14 was not affected by diet, but LBP/sCD14 was lowered by yogurt consumption in both YN and YO. Yogurt intervention increased plasma 2-arachidonoylglycerol in YO but not YN. YO peripheral blood mononuclear cells expression of NF-κB inhibitor α and transforming growth factor ß1 increased relative to CO at 9 weeks. Other biomarkers were unchanged by diet. CO and YO gained approximately 0·9 kg in body weight. YO had 3·6 % lower diastolic blood pressure at week 3. Low-fat yogurt for 9 weeks reduced biomarkers of chronic inflammation and endotoxin exposure in premenopausal women compared with a non-dairy control food. This trial was registered as NCT01686204.


Subject(s)
Biomarkers/blood , Diet , Endotoxins/toxicity , Inflammation/blood , Inflammation/diet therapy , Yogurt/analysis , Acute-Phase Proteins , Adult , Anthropometry , Arachidonic Acids/blood , C-Reactive Protein/metabolism , Carrier Proteins/blood , Chronic Disease , Cytokines/blood , Dietary Fats/administration & dosage , Dietary Fats/analysis , Endocannabinoids/blood , Endotoxemia/blood , Endotoxemia/diet therapy , Female , Glycerides/blood , Humans , Immunoglobulin M/blood , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins/blood , Middle Aged , NF-kappa B/metabolism , Obesity/metabolism , Polyunsaturated Alkamides/blood , Young Adult
10.
J Dairy Sci ; 100(10): 8565-8577, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755942

ABSTRACT

Supplementation of methionine (Met) may improve immunometabolic status, specifically during a period of inflammatory stress. The aim of the present study was to establish an inflammation model using primary neonatal bovine hepatocytes and to examine the effects of increasing concentrations of dl-Met and a maintained Met to lysine (Lys) ratio on hepatocyte inflammatory responses, antioxidant production, and Met metabolism during lipopolysaccharide (LPS) challenge. Hepatocytes isolated from 4 calves were maintained as monolayer cultures and exposed to 0, 10, or 40 µMdl-Met and 100 µM Lys (0Met100Lys, 10Met100Lys, or 40Met100Lys) or 10 µMdl-Met and 25 µM Lys (10Met25Lys). Cells were exposed to each treatment for 16 h and then challenged with either 0 or 100 ng/mL of LPS for 8 h. In the absence of LPS, glutathione (GSH) was not altered by 10Met100Lys or 10Met25Lys but was increased by 40Met100Lys. With LPS challenge, GSH concentration was decreased with 40Met100Lys and tended to be decreased with 10Met100Lys. Hepatocytes receiving 10Met100Lys treated with 100 ng/mL of LPS showed an inflammatory response with increased mRNA expression of tumor necrosis factor (TNFα), IL-6, IL-1ß, and interferon gamma, which was accompanied by increased nuclear factor κB inhibitor and serum amyloid A3 mRNA. The treatment 40Met100Lys was effective for preventing the LPS-induced increase in expression of the above genes except TNFα. Similar preventative effects were observed for 10Met25Lys; however, it did not prevent the LPS-induced increase in TNFα or IL-6 mRNA. Lipopolysaccharide challenge decreased mRNA expression of key genes controlling the transmethylation and Met regeneration pathways, which was not prevented by Met supplementation. The data suggest that bovine hepatocyte cultures can be used as a biological model to study the inflammatory cascade via an LPS challenge. Supplementation of Met prevents the LPS-induced hepatocyte cytokine expression and is associated with elevated intracellular GSH concentration.


Subject(s)
Hepatocytes/drug effects , Methionine/administration & dosage , Tumor Necrosis Factor-alpha/metabolism , Animals , Carbon/metabolism , Cattle , Glutathione/metabolism , Hepatocytes/metabolism , Inflammation/physiopathology , Interferon-gamma/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Lysine/administration & dosage
11.
J Dairy Sci ; 100(5): 3685-3696, 2017 May.
Article in English | MEDLINE | ID: mdl-28318578

ABSTRACT

Extensive efforts have been made to identify more feed-efficient dairy cows, yet it is unclear how selection for feed efficiency will influence metabolic health. The objectives of this research were to determine the relationships between residual feed intake (RFI), a measure of feed efficiency, body condition score (BCS) change, and hyperketonemia (HYK) incidence. Blood and milk samples were collected twice weekly from cows 5 to 18 d postcalving for a total of 4 samples. Hyperketonemia was diagnosed at a blood ß-hydroxybutyrate (BHB) ≥1.2 mmol/L and cows were treated upon diagnosis. Dry period, calving, and final blood sampling BCS was recorded. Prior mid-lactation production, body weight, body weight change, and dry matter intake (DMI) data were used to determine RFI phenotype, calculated as the difference between observed DMI and predicted DMI. The maximum BHB concentration (BHBmax) for each cow was used to group cows into HYK or not hyperketonemic. Lactation number, BCS, and RFI data were analyzed with linear and quadratic orthogonal contrasts. Of the 570 cows sampled, 19.7% were diagnosed with HYK. The first positive HYK test occurred at 9 ± 0.9 d postpartum and the average BHB concentration at the first positive HYK test was 1.53 ± 0.14 mmol/L. In the first 30 d postpartum, HYK-positive cows had increased milk yield and fat concentration, decreased milk protein concentration, and decreased somatic cell count. Cows with a dry BCS ≥4.0, or that lost 1 or more BCS unit across the transition to lactation period, had greater BHBmax than cows with lower BCS. Prior-lactation RFI did not alter BHBmax. Avoiding over conditioning of dry cows and subsequent excessive fat mobilization during the transition period may decrease HYK incidence; however, RFI during a prior lactation does not appear to be associated with HYK onset.


Subject(s)
Diet/veterinary , Lactation , 3-Hydroxybutyric Acid/blood , Animals , Body Weight , Cattle , Female , Milk
12.
J Dairy Sci ; 99(10): 8451-8460, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27474977

ABSTRACT

Metabolizable methionine (Met) concentrations can be increased by feeding rumen-protected dl-Met or the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid (HMBi). Hepatic responses to increasing concentrations of metabolizable Met as a result of supplementation of different Met sources have not been comparatively examined. The objective of this experiment was to examine the regulation of key genes for Met metabolism, gluconeogenesis, and fatty acid oxidation in response to increasing concentrations of dl-Met or 2-hydroxy-4-(methylthio) butanoic acid (HMB) in bovine primary hepatocytes. Hepatocytes isolated from 4 Holstein calves less than 7d old were maintained as monolayer cultures for 24h before addition of treatments. Cells were then exposed to treatments of dl-Met or HMB (0, 10, 20, 40, or 60 µM) in Met-free medium for 24h and collected for RNA isolation and quantification of gene expression by quantitative PCR. Expression of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and 5,10 methylenetetrahydrofolate reductase (MTHFR) genes, which catalyze regeneration of Met from betaine and homocysteine, decreased linearly with increasing dl-Met concentration. We observed similar effects with increasing HMB concentration, except expression of MTHFR, which was not altered. Expression of Met adenosyltransferase 1A (MAT1A), which catalyzes the first step of Met metabolism to generate S-adenosylmethionine (SAM), a primary methyl donor, was decreased with increasing dl-Met or HMB concentration. Expression of S-adenosylhomocysteine hydrolase (SAHH) was decreased linearly with increasing HMB concentration, but not altered by dl-Met. Increasing concentrations of dl-Met and HMB decreased cytosolic phosphoenolpyruvate carboxykinase (PCK1) expression, but did not alter the expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) or pyruvate carboxylase (PC). Expression of glucose-6-phosphatase(G6PC) decreased linearly with increasing HMB concentration, but not altered by dl-Met. Neither dl-Met nor HMB altered the expression of carnitine palmitoyltransferase 1A(CPT1a). These findings demonstrate reduced necessity for Met regeneration with increased Met concentrations in the medium, regardless of the Met source. The lack of upregulation of gluconeogenesis indicates that increased dl-Met or HMB is not prioritized for glucose synthesis in primary bovine hepatocytes.


Subject(s)
Liver/drug effects , Methionine/analogs & derivatives , Methionine/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Adenosylhomocysteinase/genetics , Animals , Animals, Newborn , Betaine/metabolism , Betaine-Homocysteine S-Methyltransferase/genetics , Carnitine O-Palmitoyltransferase/genetics , Cattle , Down-Regulation , Gluconeogenesis/genetics , Glucose-6-Phosphatase/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Homocysteine/metabolism , Liver/metabolism , Methionine Adenosyltransferase/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , S-Adenosylmethionine/metabolism , Up-Regulation
13.
Am J Physiol Endocrinol Metab ; 306(2): E189-96, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24302003

ABSTRACT

In this study, we used lentiviral-delivered shRNA to generate a clonal line of 3T3-F442A preadipocytes with stable silencing of hepatocyte growth factor (HGF) expression and examined the long-term consequence of this modification on fat pad development. HGF mRNA expression was reduced 94%, and HGF secretion 79% (P < 0.01), compared with preadipocytes treated with nontargeting shRNA. Fat pads derived from HGF knockdown preadipocytes were significantly smaller (P < 0.01) than control pads beginning at 3 days postinjection (0.022 ± 0.003 vs. 0.037 ± 0.004 g), and further decreased in size at day 7 (0.015 ± 0.004 vs. 0.037 ± 0.003 g) and day 14 (0.008 ± 0.002 vs. 0.045 ± 0.007 g). Expression of the endothelial cell genes TIE1 and PECAM1 increased over time in control fat pads (1.6 ± 0.4 vs. 11.4 ± 1.7 relative units at day 3 and 14, respectively; P < 0.05) but not in HGF knockdown fat pads (1.1 ± 0.5 vs. 5.9 ± 2.2 relative units at day 3 and 14). Contiguous vascular structures were observed in control fat pads but were much less developed in HGF knockdown fat pads. Differentiation of preadipocytes to mature adipocytes was significantly attenuated in HGF knockdown fat pads. Fat pads derived from preadipocytes with knockdown of the HGF receptor c-MET were smaller than control pads at day 3 postinjection (0.034 ± 0.002 vs. 0.049 ± 0.004 g; P < 0.05), and remained the same size through day 14. c-MET knockdown fat pads developed a robust vasculature, and preadipocytes differentiated to mature adipocytes. Overall these data suggest that preadipocyte-secreted HGF is an important regulator of neovascularization in developing fat pads.


Subject(s)
Adipose Tissue/growth & development , Adipose Tissue/metabolism , Hepatocyte Growth Factor/physiology , Neovascularization, Physiologic/genetics , Adipocytes/drug effects , Adipocytes/physiology , Adipose Tissue/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Hepatocyte Growth Factor/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Neovascularization, Physiologic/drug effects , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , RNA Interference/physiology , RNA, Small Interfering/pharmacology
14.
J Anim Sci Technol ; 66(3): 567-576, 2024 May.
Article in English | MEDLINE | ID: mdl-38975580

ABSTRACT

Subclinical ketosis (SCK) is a prevalent metabolic disorder that occurs during the transition to lactation period. It is defined as a high blood concentration of ketone bodies (beta-hydroxybutyric acid f ≥ 1.2 mmol/L) within the first few weeks of lactation, and often presents without clinical signs. SCK is mainly caused by negative energy balance (NEB). The objective of this study is to identify single nucleotide polymorphisms (SNPs) associated with SCK using genome-wide association studies (GWAS), and to predict the biological functions of proximal genes using gene-set enrichment analysis (GSEA). Blood samples were collected from 112 Holstein cows between 5 and 18 days postpartum to determine the incidence of SCK. Genomic DNA extracted from both SCK and healthy cows was examined using the Illumina Bovine SNP50K BeadChip for genotyping. GWAS revealed 194 putative SNPs and 163 genes associated with those SNPs. Additionally, GSEA showed that the genes retrieved by Database for Annotation, Visualization, and Integrated Discovery (DAVID) belonged to calcium signaling, starch and sucrose, immune network, and metabolic pathways. Furthermore, the proximal genes were found to be related to germ cell and early embryo development. In summary, this study proposes several feasible SNPs and genes associated with SCK through GWAS and GSEA. These candidates can be utilized in selective breeding programs to reduce the genetic risk for SCK and subfertility in high-performance dairy cows.

15.
Res Vet Sci ; 171: 105228, 2024 May.
Article in English | MEDLINE | ID: mdl-38531237

ABSTRACT

The periparturient period for dairy cows is a metabolically dynamic time period where the cow is adjusting from gestation to the onset of lactation. Metabolic disorders such as ketosis, hypocalcemia, and fatty liver occur during this time; however, tools to diagnose these diseases on-farm is limited. The need for compact metabolite quantification devices that can quantify metabolites on farm from whole blood samples is warranted. The purpose of this study was to validate a portable blood analyzer (PBA) by analyzing metabolites on privately owned dairy farms in southcentral Wisconsin. Additional tests were completed to determine if plasma metabolite quantification was similar to whole-blood quantification. Two phases were conducted on two separate farms to complete these analyses and data were analyzed by Bland-Altman plot and correlations. Metabolites quantified from whole blood samples included albumin, alanine and aspartate aminotransferases, ß-hydroxybutyrate, blood urea nitrogen, total calcium, cholesterol, creatinine kinase, γ-glutamyl transferase, glucose, magnesium, nonesterified fatty acids, phosphorous, and total protein and were analyzed in the lab after plasma separation to determine gold-standard laboratory concentrations. Across Phase 1 and 2, whole-blood PBA metabolite concentrations resulted in similar results compared to the laboratory assays. For plasma analyzed on the PBA, overall results were positively correlated, but robustness was dependent upon initial validation results indicating some metabolites are suitable for plasma quantification on the device. These results indicate that the PBA is a viable on-farm metabolite quantification tool that will be valuable for on-farm diagnosis of metabolic stress and dysfunction in transition dairy cows.


Subject(s)
Cattle Diseases , Lactation , Female , Cattle , Animals , Farms , Fatty Acids, Nonesterified , Glucose/metabolism , Calcium , 3-Hydroxybutyric Acid , Milk/metabolism , Postpartum Period
16.
Front Vet Sci ; 11: 1302573, 2024.
Article in English | MEDLINE | ID: mdl-38784656

ABSTRACT

Introduction: High feed bunk stocking densities can differentially impact individual dairy cows' competitive behaviors, feeding patterns, and feed efficiency. Our objective was to manipulate feed bunk stocking densities to evaluate intra-individual behavioral consistency across stocking densities and quantify associations with feed efficiency and production. Methods: Thirty-two primiparous (130.7 ± 29.0 days in milk, DIM) and 32 multiparous (111.3 ± 38.3 DIM) lactating Holstein cows were housed with 32 roughage intake control (RIC) bins. Each cow was assigned to share 8 bins with others of the same parity and similar body weight (16 cows/block; 2:1 feed bunk stocking density except during tests). Competition and feeding patterns were evaluated via video and RIC data, respectively, at 3 stocking densities (1:1, 2:1, 4:1 cows/bin) during 1-h tests (2 tests/stocking density; 6 tests/cow) following 2 h feed deprivation. Residual feed intake (RFI) was calculated across the 45-d study as the difference between observed and predicted dry matter intake (DMI) after accounting for known energy sinks. Linear mixed models were used to evaluate the overall impact of test stocking density on competition and feeding patterns. To evaluate intra-individual consistency between stocking densities, individual stability statistic (ISS) scores were computed. Correlational relationships were determined between RFI and ISS scores. Results and dicsussion: Cows displayed the most competitive behaviors at 2:1 stocking density (p < 0.0001) but experienced the highest rate of contacts per minute of eating time at 4:1 (1:1 vs. 2:1 vs. 4:1: 0.09 vs. 0.95 vs. 1.60 contacts/min; p < 0.0001). Feeding patterns were modulated as stocking density increased; eating rate increased (0.16 vs. 0.18 vs. 0.22 kg/min; p < 0.001) as eating time (40.3 vs. 28.2 vs. 14.6 min; p < 0.001) and DMI decreased (6.3 vs. 5.1 vs. 3.0 kg; p < 0.001). As stocking density doubled, individuals remained consistent (p = 0.018) in time spent near others actively eating and tended to remain consistent in competition behavior and feeding patterns (0.053 ≤ p ≤ 0.094). Between 2:1 and 4:1, cows with higher DMI and milk production were more consistent in first-visit DMI and duration. Feed efficiency was not associated with behavioral consistency across the tests (p ≥ 0.14). Nonetheless, feed bunk stocking density has behavioral implications which should be considered in nutritional management decisions.

17.
JDS Commun ; 5(3): 195-199, 2024 May.
Article in English | MEDLINE | ID: mdl-38646584

ABSTRACT

During the transition period, dairy cows are often exposed to negative energy balance (NEB), leading to lipid mobilization from adipose tissue into nonesterified fatty acids (NEFA), a common indicator of heightened illness risk. This study aimed to use blood near-infrared (NIR) spectra data to classify NEB into high or low categories, based on early-lactation cow NEFA thresholds. We collected a total of 186 plasma samples from 100 Holstein cows. The samples were categorized into critical thresholds, based on previous literature, of ≥0.60 and ≥0.70 mEq/L for identifying high NEB. Spectral data were preprocessed before the development of the predictive modes, which included the implementation of multiplicative scatter correction, standard normal variate (SNV), and first and second derivatives. The classification was performed using partial least square discriminant analyses (PLS-DA), and predictive performance was assessed using leave-one-out cross-validation. Predictive quality for each class was evaluated through specificity, precision, sensitivity, and F1 score. The study showed promising results, with the SNV technique achieving higher F1 scores. The model found 72.7% specificity, 78.9% precision, 80.8% sensitivity, and 79.8% F1 score to classify animals with NEFA levels of ≥0.60 mEq/L, and 82.1% specificity, 78.7% precision, 80.8% sensitivity, and 79.7% F1 score to classify animals with NEFA levels ≥0.70 mEq/L. These results indicate that NIR spectroscopy could serve as a tool for detecting cows under severe NEB, also showing potential for broader application across the entire transition period, as the spectral signal carried relevant information regarding cow metabolism. Furthermore, the combination of predictors derived from plasma spectra and other cow-level information can lead to more accurate disease alerts, given their relationship with the NEB.

18.
Sci Rep ; 14(1): 15993, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987567

ABSTRACT

Identifying sources of variance that contribute to residual feed intake (RFI) can aid in improving feed efficiency. The objectives of this study were to investigate immune cells phenotype and bioenergetic measures in CD4+ T cells in low feed efficient (LE) and high feed efficient (HE) dairy cows. Sixty-four Holstein cows were enrolled at 93 ± 22 days in milk (DIM) and monitored for 7 weeks to measure RFI. Cows with the highest RFI (LE; n = 14) or lowest RFI (HE; n = 14) were selected to determine immune cells phenotype using flow cytometry. Blood was sampled in the same LE and HE cows at 234 ± 22 DIM to isolate peripheral blood mononuclear cells, followed by magnetic separation of CD4+ T lymphocytes using bovine specific monoclonal antibodies. The metabolic function of isolated CD4+ T lymphocytes was evaluated under resting and activated states. An increased expression of CD62L+ cells within CD8+ T lymphocytes and CD21+ B lymphocytes was observed in HE cows compared to LE cows. CD4+ T lymphocytes of HE cows exhibited an increased mitochondrial and glycolytic activity in resting and activated states compared to LE cows. These data suggest that immune cells in HE cows exhibit an increased metabolic function, which might influence nutrient partitioning and utilization and serve as a source of variation in feed efficiency that warrants future investigation.


Subject(s)
CD4-Positive T-Lymphocytes , Energy Metabolism , Phenotype , Animals , Cattle , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Female , Animal Feed/analysis , Dairying , Flow Cytometry , Immunophenotyping
19.
Metabolites ; 13(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37233672

ABSTRACT

The neonatal leptin surge is important for hypothalamic development, feed intake regulation, and long-term metabolic control. In sheep, the leptin surge is eliminated with maternal overnutrition and an elevated dam body condition score (BCS), but this has not been assessed in dairy cattle. The aim of this study was to characterize the neonatal profile of leptin, cortisol and other key metabolites in calves born to Holstein cows with a range of BCS. Dam BCS was determined 21 d before expected parturition. Blood was collected from calves within 4 h of birth (d 0), and on days 1, 3, 5, and 7. Serum was analyzed for concentrations of leptin, cortisol, blood urea nitrogen, ß-hydroxybutyrate (BHB), free fatty acids (FFA), triglycerides, and total protein (TP). Statistical analysis was performed separately for calves sired by Holstein (HOL) or Angus (HOL-ANG) bulls. Leptin tended to decrease after birth in HOL calves, but there was no evidence of an association between leptin and BCS. For HOL calves, the cortisol level increased with an increasing dam BCS on day 0 only. Dam BCS was variably associated with the calf BHB and TP levels, depending on the sire breed and day of age. Further investigation is required to elucidate the impacts of maternal dietary and energy status during gestation on offspring metabolism and performance, in addition to the potential impact of the absence of a leptin surge on long-term feed intake regulation in dairy cattle.

20.
Metabolites ; 13(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37755303

ABSTRACT

Improving dairy cow feed efficiency is critical to the sustainability and profitability of dairy production, yet the underlying mechanisms that contribute to individual cow variation in feed efficiency are not fully understood. The objectives of this study were to (1) identify genes and associated pathways that are altered in cows with high- or low-residual feed intake (RFI) using RNA sequencing, and (2) determine if rumen-protected choline supplementation during mid-lactation would influence performance or feed efficiency. Mid-lactation (134 ± 20 days in milk) multiparous Holstein cows were randomly assigned to either supplementation of 0 g/d supplementation (CTL; n = 32) or 30 g/d of a rumen-protected choline product (RPC; 13.2 g choline ion; n = 32; Balchem Corp., New Hampton, NY, USA). Residual feed intake was determined as dry matter intake regressed on milk energy output, days in milk, body weight change, metabolic body weight, and dietary treatment. The 12 cows with the highest RFI (low feed efficient; LE) and 12 cows with the lowest RFI (high feed efficient; HE), balanced by dietary treatment, were selected for blood, liver, and muscle analysis. No differences in production or feed efficiency were detected with RPC supplementation, although albumin was greater and arachidonic acid tended to be greater in RPC cows. Concentrations of ß-hydroxybutyrate were greater in HE cows. Between HE and LE, 268 and 315 differentially expressed genes in liver and muscle tissue, respectively, were identified through RNA sequencing. Pathway analysis indicated differences in cell cycling, oxidative stress, and immunity in liver and differences in glucose and fatty acid pathways in muscle. The current work indicates that unique differences in liver and muscle post-absorptive nutrient metabolism contribute to sources of variation in feed efficiency and that differences in amino acid and fatty acid oxidation, cell cycling, and immune function should be further examined.

SELECTION OF CITATIONS
SEARCH DETAIL