Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
BMC Med ; 22(1): 294, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020289

ABSTRACT

BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease. METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis. RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R 2 < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05). CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.


Subject(s)
Endometriosis , Gastrointestinal Microbiome , Humans , Endometriosis/microbiology , Female , Gastrointestinal Microbiome/physiology , Adult , Case-Control Studies , Estonia/epidemiology , Cohort Studies , Middle Aged , Metagenomics , Dysbiosis/microbiology , Young Adult
2.
Alzheimers Dement ; 20(7): 4935-4950, 2024 07.
Article in English | MEDLINE | ID: mdl-38572865

ABSTRACT

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome. METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAß-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD). RESULTS: Eighteen-month female (but not male) hAß-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAß-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups. DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAß-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD. HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAß-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAß-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Genotype , Mice, Transgenic , Animals , Alzheimer Disease/microbiology , Alzheimer Disease/genetics , Female , Male , Humans , Amyloid beta-Peptides/metabolism , Mice , Gene Knock-In Techniques , Sex Characteristics , Microbiota , Gastrointestinal Microbiome , Metabolomics
3.
Clin Infect Dis ; 77(8): 1079-1091, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37279523

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is undermining modern medicine, a problem compounded by bacterial adaptation to antibiotic pressures. Phages are viruses that infect bacteria. Their diversity and evolvability offer the prospect of their use as a therapeutic solution. Reported are outcomes of customized phage therapy for patients with difficult-to-treat antimicrobial resistant infections. METHODS: We retrospectively assessed 12 cases of customized phage therapy from a phage production center. Phages were screened, purified, sequenced, characterized, and Food and Drug Administration-approved via the IND (investigational new drug) compassionate-care route. Outcomes were assessed as favorable or unfavorable by microbiologic and clinical standards. Infections were device-related or systemic. Other experiences such as time to treatment, antibiotic synergy, and immune responses were recorded. RESULTS: Fifty requests for phage therapy were received. Customized phages were generated for 12 patients. After treatment, 42% (5/12) of cases showed bacterial eradication and 58% (7/12) showed clinical improvement, with two-thirds of all cases (66%) showing favorable responses. No major adverse reactions were observed. Antibiotic-phage synergy in vitro was observed in most cases. Immunological neutralization of phages was reported in 5 cases. Several cases were complicated by secondary infections. Complete characterization of the phages (morphology, genomics, and activity) and their production (methods, sterility, and endotoxin tests) are reported. CONCLUSIONS: Customized phage production and therapy was safe and yielded favorable clinical or microbiological outcomes in two-thirds of cases. A center or pipeline dedicated to tailoring the phages against a patient's specific AMR bacterial infection may be a viable option where standard treatment has failed.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Humans , Anti-Bacterial Agents/therapeutic use , Bacteria , Bacterial Infections/therapy , Bacterial Infections/microbiology , Bacteriophages/physiology , Retrospective Studies
4.
Cancer Metastasis Rev ; 41(2): 261-280, 2022 06.
Article in English | MEDLINE | ID: mdl-35474500

ABSTRACT

Therapy for cutaneous melanoma, the deadliest of the skin cancers, is inextricably linked to the immune system. Once thought impossible, cures for metastatic melanoma with immune checkpoint inhibitors have been developed within the last decade and now occur regularly in the clinic. Unfortunately, half of tumors do not respond to checkpoint inhibitors and efforts to further exploit the immune system are needed. Tantalizing associations with immune health and gut microbiome composition suggest we can improve the success rate of immunotherapy. The gut contains over half of the immune cells in our bodies and increasingly, evidence is linking the immune system within our gut to melanoma development and treatment. In this review, we discuss the importance the skin and gut microbiome may play in the development of melanoma. We examine the differences in the microbial populations which inhabit the gut of those who develop melanoma and subsequently respond to immunotherapeutics. We discuss the role of dietary intake on the development and treatment of melanoma. And finally, we review the landscape of published and registered clinical trials therapeutically targeting the microbiome in melanoma through dietary supplements, fecal microbiota transplant, and microbial supplementation.


Subject(s)
Melanoma , Microbiota , Skin Neoplasms , Diet , Humans , Immunotherapy , Melanoma/therapy , Skin Neoplasms/therapy
5.
J Neuroinflammation ; 20(1): 211, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726739

ABSTRACT

The contribution of the gut microbiome to neuroinflammation, cognition, and Alzheimer's disease progression has been highlighted over the past few years. Additionally, inhibition of various components of the complement system has repeatedly been demonstrated to reduce neuroinflammation and improve cognitive performance in AD mouse models. Whether the deletion of these complement components is associated with distinct microbiome composition, which could impact neuroinflammation and cognitive performance in mouse models has not yet been examined. Here, we provide a comprehensive analysis of conditional and constitutive knockouts, pharmacological inhibitors, and various housing paradigms for the animal models and wild-type controls at various ages. We aimed to determine the impact of C1q or C5aR1 inhibition on the microbiome in the Arctic and Tg2576 mouse models of AD, which develop amyloid plaques at different ages and locations. Analysis of fecal samples from WT and Arctic mice following global deletion of C1q demonstrated significant alterations to the microbiomes of Arctic but not WT mice, with substantial differences in abundances of Erysipelotrichales, Clostridiales and Alistipes. While no differences in microbiome diversity were detected between cohoused wildtype and Arctic mice with or without the constitutive deletion of the downstream complement receptor, C5aR1, a difference was detected between the C5aR1 sufficient (WT and Arctic) and deficient (C5ar1KO and ArcticC5aR1KO) mice, when the mice were housed segregated by C5aR1 genotype. However, cohousing of C5aR1 sufficient and deficient wildtype and Arctic mice resulted in a convergence of the microbiomes and equalized abundances of each identified order and genus across all genotypes. Similarly, pharmacologic treatment with the C5aR1 antagonist, PMX205, beginning at the onset of beta-amyloid plaque deposition in the Arctic and Tg2576 mice, demonstrated no impact of C5aR1 inhibition on the microbiome. This study demonstrates the importance of C1q in microbiota homeostasis in neurodegenerative disease. In addition, while demonstrating that constitutive deletion of C5aR1 can significantly alter the composition of the fecal microbiome, these differences are not present when C5aR1-deficient mice are cohoused with C5aR1-sufficient animals with or without the AD phenotype and suggests limited if any contribution of the microbiome to the previously observed prevention of cognitive and neuronal loss in the C5aR1-deficient AD models.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Animals , Mice , Alzheimer Disease/genetics , Complement C1q/genetics , Disease Models, Animal , Neuroinflammatory Diseases , Receptors, Complement/genetics
6.
Article in English | MEDLINE | ID: mdl-33139284

ABSTRACT

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Subject(s)
Cystic Fibrosis , Anti-Bacterial Agents/therapeutic use , Chromatography, Liquid , Cystic Fibrosis/drug therapy , Humans , Mass Spectrometry , Sputum
7.
Anal Chem ; 93(4): 2174-2182, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33434014

ABSTRACT

Stable isotope tracers are applied for in vivo and in vitro studies to reveal the activity of enzymes and intracellular metabolic pathways. Most often, such tracers are used with gas chromatography coupled to mass spectrometry (GC-MS) owing to its ease of operation and reproducible mass spectral databases. Differences in isotope tracer performance of the classic GC-quadrupole MS instrument and newer time-of-flight instruments are not well studied. Here, we used three commercially available instruments for the analysis of identical samples from a stable isotope labeling study that used [U-13C6] d-glucose to investigate the metabolism of the bacterium Rothia mucilaginosa with respect to 29 amino acids and hydroxyl acids involved in primary metabolism. The prokaryote R. mucilaginosa belongs to the family of Micrococcaceae and is present and metabolically active in the airways and sputum of cystic fibrosis patients. Overall, all three GC-MS instruments (low-resolution GC-SQ MS, low-resolution GC-TOF MS, and high-resolution GC-QTOF MS) can be used to perform stable isotope tracing studies for glycolytic intermediates, tricarboxylic acid (TCA) metabolites, and amino acids, yielding similar biological results, with high-resolution GC-QTOF MS offering additional capabilities to identify the chemical structures of unknown compounds that might show significant isotope enrichments in biological studies.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Isotope Labeling/methods , Micrococcaceae/metabolism
8.
Appl Environ Microbiol ; 87(23): e0144821, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34550753

ABSTRACT

Municipal wastewater provides an integrated sample of a diversity of human-associated microbes across a sewershed, including viruses. Wastewater-based epidemiology (WBE) is a promising strategy to detect pathogens and may serve as an early warning system for disease outbreaks. Notably, WBE has garnered substantial interest during the coronavirus disease 2019 (COVID-19) pandemic to track disease burden through analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Throughout the COVID-19 outbreak, tracking SARS-CoV-2 in wastewater has been an important tool for understanding the spread of the virus. Unlike traditional sequencing of SARS-CoV-2 isolated from clinical samples, which adds testing burden to the health care system, in this study, metatranscriptomics was used to sequence virus directly from wastewater. Here, we present a study in which we explored RNA viral diversity through sequencing 94 wastewater influent samples across seven wastewater treatment plants (WTPs), collected from August 2020 to January 2021, representing approximately 16 million people in Southern California. Enriched viral libraries identified a wide diversity of RNA viruses that differed between WTPs and over time, with detected viruses including coronaviruses, influenza A, and noroviruses. Furthermore, single-nucleotide variants (SNVs) of SARS-CoV-2 were identified in wastewater, and we measured proportions of overall virus and SNVs across several months. We detected several SNVs that are markers for clinically important SARS-CoV-2 variants along with SNVs of unknown function, prevalence, or epidemiological consequence. Our study shows the potential of WBE to detect viruses in wastewater and to track the diversity and spread of viral variants in urban and suburban locations, which may aid public health efforts to monitor disease outbreaks. IMPORTANCE Wastewater-based epidemiology (WBE) can detect pathogens across sewersheds, which represents the collective waste of human populations. As there is a wide diversity of RNA viruses in wastewater, monitoring the presence of these viruses is useful for public health, industry, and ecological studies. Specific to public health, WBE has proven valuable during the coronavirus disease 2019 (COVID-19) pandemic to track the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without adding burden to health care systems. In this study, we used metatranscriptomics and reverse transcription-droplet digital PCR (RT-ddPCR) to assay RNA viruses across Southern California wastewater from August 2020 to January 2021, representing approximately 16 million people from Los Angeles, Orange, and San Diego counties. We found that SARS-CoV-2 quantification in wastewater correlates well with county-wide COVID-19 case data, and that we can detect SARS-CoV-2 single-nucleotide variants through sequencing. Likewise, wastewater treatment plants (WTPs) harbored different viromes, and we detected other human pathogens, such as noroviruses and adenoviruses, furthering our understanding of wastewater viral ecology.


Subject(s)
RNA Viruses/isolation & purification , SARS-CoV-2/isolation & purification , Virome , Wastewater-Based Epidemiological Monitoring , Wastewater/virology , COVID-19/epidemiology , California , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , RNA Viruses/classification , RNA Viruses/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , Sequence Analysis, RNA
9.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31451543

ABSTRACT

We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Subject(s)
Fimbriae, Bacterial/metabolism , Flagella/metabolism , Pseudomonas aeruginosa/genetics , Quinolones/metabolism , Quorum Sensing/physiology , Anti-Bacterial Agents/pharmacology , Fimbriae, Bacterial/drug effects , Fimbriae, Bacterial/genetics , Flagella/drug effects , Flagella/genetics , Microbial Viability/drug effects , Movement/physiology , Pseudomonas Phages/genetics , Pseudomonas Phages/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/virology , Quinolones/pharmacology , Signal Transduction , Stress, Physiological
10.
J Bacteriol ; 201(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30642989

ABSTRACT

The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections.IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium's contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.


Subject(s)
Adaptation, Physiological , Cystic Fibrosis/complications , Gram-Negative Bacterial Infections/microbiology , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/physiology , Gene Expression Profiling , Humans , Hydrogen-Ion Concentration , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/isolation & purification
11.
J Bacteriol ; 200(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30249702

ABSTRACT

Chronic infections with slow-growing pathogens have plagued humans throughout history. However, assessing the identities and growth rates of bacteria in an infection has remained an elusive goal. Neubauer et al. (J. Bacteriol. 200:e00365-18, 2018, https://doi.org/10.1128/JB.00365-18) combine two cutting-edge approaches to make progress on both fronts: probing specific RNA molecules to assess the identity of actively transcribing microbes and measuring growth rates through incorporation of stable isotope labels. They found that growth rates of pathogens were relatively stable during antibacterial therapy. The article delves into a basic and unanswered question that gets to the heart of understanding infection: what are the microbial growth rates?


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Humans , Lipids , Sputum , Staphylococcus aureus
12.
J Pharmacol Exp Ther ; 367(3): 452-460, 2018 12.
Article in English | MEDLINE | ID: mdl-30287477

ABSTRACT

In chronic kidney disease (CKD), the gut microbiome is altered and bacterial-derived uremic toxins promote systemic inflammation and cardiovascular disease. Ferric citrate complex is a dietary phosphate binder prescribed for patients with end-stage kidney disease to treat hyperphosphatemia and secondary hyperparathyroidism. Iron is an essential nutrient in both microbes and mammals. This study was undertaken to test the hypothesis that the large iron load administered with ferric citrate in CKD may significantly change the gut microbiome. Male Sprague-Dawley rats underwent 5/6 nephrectomy to induce CKD. Normal control and CKD rats were randomized to regular chow or a 4% ferric citrate diet for 6 weeks. Fecal and cecal microbial DNA was analyzed via 16S ribosomal RNA gene sequencing on the Illumina MiSeq system. CKD rats had lower abundances of Firmicutes and Lactobacillus compared with normal rats and had lower overall gut microbial diversity. CKD rats treated with ferric citrate had improved hemoglobin and creatinine clearance and amelioration of hyperphosphatemia and hypertension. Ferric citrate treatment increased bacterial diversity in CKD rats almost to levels observed in control rats. The tryptophanase-possessing families Verrucomicrobia, Clostridiaceae, and Enterobacteriaceae were increased by ferric citrate treatment. The uremic toxins indoxyl sulfate and p-cresyl sulfate were not increased with ferric citrate treatment. Verrucomicrobia was largely represented by Akkermansia muciniphila, which has important roles in mucin degradation and gut barrier integrity. In summary, ferric citrate therapy in CKD rats was associated with significant changes in the gut microbiome and beneficial kidney and blood pressure parameters.


Subject(s)
Ferric Compounds/pharmacology , Gastrointestinal Microbiome/drug effects , Phosphates/metabolism , Renal Insufficiency, Chronic/microbiology , Animals , Blood Pressure/drug effects , Cecum/microbiology , DNA, Bacterial/genetics , Feces/microbiology , Kidney/microbiology , Male , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 110(26): 10771-6, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23690590

ABSTRACT

Mucosal surfaces are a main entry point for pathogens and the principal sites of defense against infection. Both bacteria and phage are associated with this mucus. Here we show that phage-to-bacteria ratios were increased, relative to the adjacent environment, on all mucosal surfaces sampled, ranging from cnidarians to humans. In vitro studies of tissue culture cells with and without surface mucus demonstrated that this increase in phage abundance is mucus dependent and protects the underlying epithelium from bacterial infection. Enrichment of phage in mucus occurs via binding interactions between mucin glycoproteins and Ig-like protein domains exposed on phage capsids. In particular, phage Ig-like domains bind variable glycan residues that coat the mucin glycoprotein component of mucus. Metagenomic analysis found these Ig-like proteins present in the phages sampled from many environments, particularly from locations adjacent to mucosal surfaces. Based on these observations, we present the bacteriophage adherence to mucus model that provides a ubiquitous, but non-host-derived, immunity applicable to mucosal surfaces. The model suggests that metazoan mucosal surfaces and phage coevolve to maintain phage adherence. This benefits the metazoan host by limiting mucosal bacteria, and benefits the phage through more frequent interactions with bacterial hosts. The relationships shown here suggest a symbiotic relationship between phage and metazoan hosts that provides a previously unrecognized antimicrobial defense that actively protects mucosal surfaces.


Subject(s)
Bacteriophages/immunology , Bacteriophages/physiology , Mucus/immunology , Mucus/virology , Adhesiveness , Animals , Bacterial Adhesion/immunology , Bacteriophage T4/genetics , Bacteriophage T4/immunology , Bacteriophage T4/physiology , Bacteriophages/genetics , Cell Line , Escherichia coli/immunology , Escherichia coli/virology , Host-Pathogen Interactions/immunology , Humans , Mice , Models, Immunological , Mucus/microbiology , Symbiosis/immunology
14.
Am J Respir Crit Care Med ; 189(11): 1309-15, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24702670

ABSTRACT

A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform our understanding of microbial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis.


Subject(s)
Cystic Fibrosis/complications , Pneumonia, Bacterial/etiology , Respiratory System/microbiology , Humans , Larynx/microbiology , Oropharynx/microbiology , Pneumonia, Bacterial/microbiology , Trachea/microbiology
15.
BMC Genomics ; 15: 169, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24581117

ABSTRACT

BACKGROUND: A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. RESULTS: Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. CONCLUSIONS: Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063).


Subject(s)
Alcaligenaceae/genetics , Genome, Bacterial , Alcaligenaceae/classification , Amino Acid Sequence , Bacterial Proteins/genetics , Contig Mapping , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Res Sq ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343829

ABSTRACT

Background: Most respiratory microbiome studies have focused on amplicon rather than metagenomics sequencing due to high host DNA content. We evaluated efficacy of five host DNA depletion methods on previously frozen human bronchoalveolar lavage (BAL), nasal swabs, and sputum prior to metagenomic sequencing. Results: Median sequencing depth was 76.4 million reads per sample. Untreated nasal, sputum and BAL samples had 94.1%, 99.2%, and 99.7% host-reads. The effect of host depletion differed by sample type. Most treatment methods increased microbial reads, species richness and predicted functional richness; the increase in species and predicted functional richness was mediated by higher effective sequencing depth. For BAL and nasal samples, most methods did not change Morisita-Horn dissimilarity suggesting limited bias introduced by host depletion. Conclusions: Metagenomics sequencing without host depletion will underestimate microbial diversity of most respiratory samples due to shallow effective sequencing depth and is not recommended. Optimal host depletion methods vary by sample type.

17.
Microbiol Spectr ; 12(5): e0322123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526142

ABSTRACT

The emergence of antibiotic-resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. Although phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation, and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat vancomycin-resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.IMPORTANCEBacteriophages have become an important alternative treatment for individuals with life-threatening antibiotic-resistant bacteria (ARB) infections. Because antibiotics represent the standard-of-care for treatment of ARB, antibiotics and phages often are delivered together without evidence that they work cooperatively. Testing for cooperativity can be difficult due to the equipment necessary and a lack of standardized means for performing the testing in liquid medium. We developed an assay using solid medium to identify interactions between antibiotics and phages for gram-positive and gram-negative bacteria. We modeled the interactions between antibiotics and phages on solid medium, and then tested multiple replicates of vancomycin-resistant Enterococcus (VRE) and Stenotrophomonas in the assay. For each organism, we identified synergy between different phage and antibiotic combinations. The development of this solid media assay for assessing synergy between phages and antibiotics will better inform the use of these combinations in the treatment of ARB infections.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Phage Therapy , Bacteriophages/physiology , Bacteriophages/isolation & purification , Anti-Bacterial Agents/pharmacology , Phage Therapy/methods , Humans , Culture Media/chemistry , Microbial Sensitivity Tests/methods , Bacteria/virology , Bacteria/drug effects , Drug Resistance, Bacterial
18.
Cancer Res Commun ; 4(3): 660-670, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38391189

ABSTRACT

PURPOSE: Chronic inflammation is integral to myeloproliferative neoplasm (MPN) pathogenesis. JAK inhibitors reduce cytokine levels, but not without significant side effects. Nutrition is a low-risk approach to reduce inflammation and ameliorate symptoms in MPN. We performed a randomized, parallel-arm study to determine the feasibility of an education-focused Mediterranean diet intervention among patients with MPN. EXPERIMENTAL DESIGN: We randomly assigned patients with MPN to either a Mediterranean diet or standard U.S. Dietary Guidelines for Americans (USDA). Groups received equal but separate education with registered dietician counseling and written dietary resources. Patients were prospectively followed for feasibility, adherence, and symptom burden assessments. Biological samples were collected at four timepoints during the 15-week study to explore changes in inflammatory biomarkers and gut microbiome. RESULTS: The Mediterranean diet was as easy to follow for patients with MPN as the standard USDA diet. Approximately 80% of the patients in the Mediterranean diet group achieved a Mediterranean Diet Adherence Score of ≥8 throughout the entire active intervention period, whereas less than 50% of the USDA group achieved a score of ≥8 at any timepoint. Improvement in symptom burden was observed in both diet groups. No significant changes were observed in inflammatory cytokines. The diversity and composition of the gut microbiome remained stable throughout the duration of the intervention. CONCLUSIONS: With dietician counseling and written education, patients with MPN can adhere to a Mediterranean eating pattern. Diet interventions may be further developed as a component of MPN care, and potentially incorporated into the management of other hematologic conditions. SIGNIFICANCE: Diet is a central tenant of management of chronic conditions characterized by subclinical inflammation, such as cardiovascular disease, but has not entered the treatment algorithm for clonal hematologic disorders. Here, we establish that a Mediterranean diet intervention is feasible in the MPN patient population and can improve symptom burden. These findings warrant large dietary interventions in patients with hematologic disorders to test the impact of diet on clinical outcomes.


Subject(s)
Diet, Mediterranean , Myeloproliferative Disorders , Neoplasms , Humans , United States , Pilot Projects , Feasibility Studies , Myeloproliferative Disorders/therapy , Inflammation , Nutrients
19.
Cancer Cell ; 42(1): 16-34, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38157864

ABSTRACT

Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Neoplasms , Humans , Melanoma/therapy , Neoplasms/therapy , Immunotherapy , Host Microbial Interactions
20.
mSystems ; 8(1): e0080722, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36651762

ABSTRACT

The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.


Subject(s)
Bacteriophages , Microbiota , Bacteriophages/genetics , Biology
SELECTION OF CITATIONS
SEARCH DETAIL