ABSTRACT
Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.
Subject(s)
Aspergillus fumigatus , Candida albicans , Phosphopyruvate Hydratase , Animals , Humans , Mice , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Candida albicans/enzymology , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Monocytes/metabolism , Monocytes/microbiology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphopyruvate Hydratase/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/microbiologyABSTRACT
The precise regulation of protein function is essential in biological systems and a key goal in chemical biology and protein engineering. Here, we describe a straightforward method to engineer functional control into the isopeptide bond-forming SpyTag/SpyCatcher protein ligation system. First, we perform a cysteine scan of the structured region of SpyCatcher. Except for two known reactive and catalytic residues, none of these mutations abolish reactivity. In a second screening step, we modify the cysteines with disulfide bond-forming small molecules. Here we identify 8 positions at which modifications strongly inhibit reactivity. This inhibition can be reversed by reducing agents. We call such a reversibly inhibitable SpyCatcher "SpyLock". Using "BiLockCatcher", a genetic fusion of wild-type SpyCatcher and SpyLock, and SpyTagged antibody fragments, we generate bispecific antibodies in a single, scalable format, facilitating the screening of a large number of antibody combinations. We demonstrate this approach by screening anti-PD-1/anti-PD-L1 bispecific antibodies using a cellular reporter assay.
Subject(s)
Antibodies, Bispecific , Cysteine , Protein Engineering , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Humans , Protein Engineering/methods , Cysteine/chemistry , Cysteine/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , HEK293 Cells , Disulfides/chemistry , AnimalsABSTRACT
Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years. However, little is known about the host immune response to Mucorales. Therefore, we characterized the interaction among L. corymbifera-one of the most common causative agents of IM-and human monocytes, which are specialized phagocytes that play an instrumental role in the modulation of the inflammatory response against several pathogenic fungi. This study covered four relevant aspects of the host-pathogen interaction: i) The recognition of L. corymbifera by human monocytes. ii) The intracellular fate of L. corymbifera. iii) The inflammatory response by human monocytes against the most common causative agents of mucormycosis. iv) The main activated Pattern-Recognition Receptors (PRRs) inflammatory signaling cascades in response to L. corymbifera. Here, we demonstrate that L. corymbifera exhibits resistance to intracellular killing over 24 hours, does not germinate, and inflicts minimal damage to the host cell. Nonetheless, viable fungal spores of L. corymbifera induced early production of the pro-inflammatory cytokine IL-1ß, and late release of TNF-α and IL-6 by human monocytes. Moreover, we revealed that IL-1ß production predominantly depends on Toll-like receptors (TLRs) priming, especially via TLR4, while TNF-α is secreted via C-type lectin receptors (CTLs), and IL-6 is produced by synergistic activation of TLRs and CTLs. All these signaling pathways lead to the activation of NF-kB, a transcription factor that not only regulates the inflammatory response but also the apoptotic fate of monocytes during infection with L. corymbifera. Collectively, our findings provide new insights into the host-pathogen interactions, which may serve for future therapies to enhance the host inflammatory response to L. corymbifera.
Subject(s)
COVID-19 , Mucorales , Mucormycosis , Humans , Mucormycosis/microbiology , Mucormycosis/pathology , NF-kappa B , Monocytes/pathology , Tumor Necrosis Factor-alpha , Interleukin-6 , Mucorales/physiologyABSTRACT
Candida albicans is usually a benign member of the human gut microbiota, but can become pathogenic under certain circumstances, for example in an immunocompromised host. The innate immune system, in particular neutrophils and macrophages, constitutes a crucial first line of defense against fungal invasion, however adaptive immunity may provide long term protection and thus allow vaccination of at risk patients. While TH1 and TH17 cells are important for antifungal responses, the role of B cells and antibodies in protection from C. albicans infection is less well defined. In this study, we show that C. albicans hyphae but not yeast, as well as fungal cell wall components, directly activate B cells via MyD88 signaling triggered by Toll- like receptor 2, leading to increased IgG1 production. While Dectin-1 signals and specific recognition by the B cell receptor are dispensable for B cell activation in this system, TLR2/MyD88 signals cooperate with CD40 signals in promoting B cell activation. Importantly, recognition of C. albicans via MyD88 signaling is also essential for induction of IL-6 secretion by B cells, which promotes TH17 polarization in T-B cell coculture experiments. B cells may thus be activated directly by C. albicans in its invasive form, leading to production of antibodies and T cell help for fungal clearance.
Subject(s)
B-Lymphocytes/immunology , Candida albicans/immunology , Candidiasis/immunology , Cell Differentiation , Hyphae/immunology , Immunoglobulin G/metabolism , Interleukin-6/metabolism , Th17 Cells/immunology , Toll-Like Receptor 2/metabolism , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/microbiology , Candida albicans/pathogenicity , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , Coculture Techniques , Host-Pathogen Interactions , Humans , Hyphae/pathogenicity , Lymphocyte Activation , Mice, Inbred C57BL , Phenotype , Secretory Pathway , Signal Transduction , Th17 Cells/metabolism , Th17 Cells/microbiologyABSTRACT
Candida albicans is a common commensal on human mucosal surfaces, but can become pathogenic, e.g. if the host is immunocompromised. While neutrophils, macrophages and T cells are regarded as major players in the defense against pathogenic C. albicans, the role of B cells and the protective function of their antibodies are less well characterized. In this study, we show that human serum antibodies are able to enhance the association of human THP-1 monocyte-like cells with C. albicans cells. Human serum antibodies are also capable of inhibiting the adherence and damage dealt to epithelial cells. Furthermore, human serum antibodies impair C. albicans invasion of human oral epithelial cells by blocking induced endocytosis and consequently host cell damage. While aspartic proteases secreted by C. albicans are able to cleave human IgG, this process does not appear to affect the protective function of human antibodies. Thus, humans are equipped with a robust antibody response to C. albicans, which can enhance antifungal activities and prevent fungal-mediated epithelial damage.
Subject(s)
Aspartic Acid Proteases , Candida albicans , Antibody Formation , Antifungal Agents/pharmacology , Aspartic Acid Endopeptidases , HumansABSTRACT
In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble ß-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.