Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 568(7750): 108-111, 2019 04.
Article in English | MEDLINE | ID: mdl-30918404

ABSTRACT

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.


Subject(s)
Aquatic Organisms/metabolism , Archaea/metabolism , Ethane/metabolism , Anaerobiosis , Archaea/classification , Archaea/enzymology , Archaea/genetics , Deltaproteobacteria/metabolism , Ethane/chemistry , Gases/chemistry , Gases/metabolism , Gulf of Mexico , Methane/biosynthesis , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Sulfides/metabolism
2.
Nature ; 539(7629): 396-401, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27749816

ABSTRACT

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding ß-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.


Subject(s)
Archaea/metabolism , Butanes/metabolism , Mesna/chemistry , Mesna/metabolism , Alkylation , Anaerobiosis , Archaea/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Biocatalysis , Evolution, Molecular , Oxidation-Reduction , Sulfates/metabolism , Temperature
3.
Environ Microbiol ; 22(9): 4057-4066, 2020 09.
Article in English | MEDLINE | ID: mdl-32783260

ABSTRACT

The aromatic hydrocarbon naphthalene, which occurs in coal and oil, can be degraded by aerobic or anaerobic microorganisms. A wide-spread electron acceptor for the latter is sulfate. Evidence for in situ naphthalene degradation stems in particular from the detection of 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate in oil field samples. Because such intermediates are usually not detected in laboratory cultures with high sulfate concentrations, one may suppose that conditions in reservoirs, such as sulfate limitation, trigger metabolite release. Indeed, if naphthalene-grown cells of marine sulfate-reducing Deltaproteobacteria (strains NaphS2, NaphS3 and NaphS6) were transferred to sulfate-free medium, they released 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate while still consuming naphthalene. With 2-naphthoate as initial substrate, cells produced [5,6,7,8]-tetrahydro-2-naphthoate and the hydrocarbon, naphthalene, indicating reversibility of the initial naphthalene-metabolizing reaction. The reactions in the absence of sulfate were not coupled to observable growth. Excretion of naphthalene-derived metabolites was also achieved in sulfate-rich medium upon addition of the protonophore carbonyl cyanide4-(trifluoromethoxy)phenylhydrazone or the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. In conclusion, obstruction of electron flow and energy gain by sulfate limitation offers an explanation for the occurrence of naphthalene-derived metabolites in oil reservoirs, and provides a simple experimental tool for gaining insights into the anaerobic naphthalene oxidation pathway from an energetic perspective.


Subject(s)
Deltaproteobacteria/metabolism , Naphthalenes/metabolism , Seawater/microbiology , Sulfates/metabolism , Anaerobiosis , Biodegradation, Environmental , Culture Media/chemistry , Culture Media/metabolism , Fossil Fuels/analysis , Fossil Fuels/microbiology , Oxidation-Reduction , Sulfates/analysis
4.
Nature ; 491(7425): 541-6, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135396

ABSTRACT

Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea. Hence, AOM might not be an obligate syntrophic process but may be carried out by the ANME alone. Furthermore, we show that the produced S(0)--in the form of disulphide--is disproportionated by the Deltaproteobacteria associated with the ANME. Our observations expand the diversity of known microbially mediated sulphur transformations and have significant implications for our understanding of the biogeochemical carbon and sulphur cycles.


Subject(s)
Aquatic Organisms/metabolism , Archaea/metabolism , Deltaproteobacteria/metabolism , Methane/metabolism , Sulfur/chemistry , Sulfur/metabolism , Anaerobiosis , Carbon Cycle , Carbon Dioxide/metabolism , Disulfides/metabolism , Geologic Sediments/chemistry , Models, Biological , Oxidation-Reduction , Sulfates/metabolism
5.
Proc Natl Acad Sci U S A ; 108(52): E1484-90, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22160711

ABSTRACT

Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal-bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from (14)C-bicarbonate and (35)S-sulfide to (14)C-methane and (35)S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.


Subject(s)
Archaea/metabolism , Bacteria, Anaerobic/metabolism , Carbon/metabolism , Methane/metabolism , Models, Biological , Sulfates/metabolism , Sulfur/metabolism , Oxidation-Reduction , Thermodynamics
6.
Environ Microbiol ; 15(5): 1561-71, 2013 May.
Article in English | MEDLINE | ID: mdl-23095164

ABSTRACT

Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 µm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.


Subject(s)
Enzymes/metabolism , Microbial Consortia , Seawater/microbiology , Sulfates/metabolism , Anaerobiosis , Archaea/enzymology , Archaea/genetics , Bacteria/enzymology , Black Sea , Enzymes/isolation & purification , Immune Sera/metabolism , Immunohistochemistry , Methane/metabolism , Oxidation-Reduction
7.
Nature ; 449(7164): 898-901, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17882164

ABSTRACT

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (> or =C(6)). Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 degrees C. With ethane, a slower enrichment with residual sediment was obtained at 12 degrees C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 degrees C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.


Subject(s)
Bacteria, Anaerobic/metabolism , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Sulfates/metabolism , Sulfur-Reducing Bacteria/metabolism , Anaerobiosis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Butanes/metabolism , Ethane/metabolism , Kinetics , Molecular Sequence Data , Oceans and Seas , Oxidation-Reduction , Phylogeny , Propane/metabolism , RNA, Ribosomal, 16S , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics
8.
Environ Microbiol ; 14(7): 1772-87, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22616633

ABSTRACT

Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50 S m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0) → 4Fe(2+) + 8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-) + SO(4) (2-) + 9H(+) → HS(-) + 4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments.


Subject(s)
Electric Conductivity , Iron/metabolism , Sulfur-Reducing Bacteria/metabolism , Corrosion , Desulfovibrio/metabolism , Geologic Sediments/microbiology , Sulfates/metabolism , Sulfides/metabolism
9.
Microbiology (Reading) ; 158(Pt 12): 2946-2957, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23038808

ABSTRACT

Aromatic hydrocarbons are among the main constituents of crude oil and represent a major fraction of biogenic hydrocarbons. Anthropogenic influences as well as biological production lead to exposure and accumulation of these toxic chemicals in the water column and sediment of marine environments. The ability to degrade these compounds in situ has been demonstrated for oxygen- and sulphate-respiring marine micro-organisms. However, if and to what extent nitrate-reducing bacteria contribute to the degradation of hydrocarbons in the marine environment and if these organisms are similar to their well-studied freshwater counterparts has not been investigated thoroughly. Here we determine the potential of marine prokaryotes from different sediments of the Atlantic Ocean and Mediterranean Sea to couple nitrate reduction to the oxidation of aromatic hydrocarbons. Nitrate-dependent oxidation of toluene as an electron donor in anoxic enrichment cultures was elucidated by analyses of nitrate, nitrite and dinitrogen gas, accompanied by cell proliferation. The metabolically active members of the enriched communities were identified by RT-PCR of their 16S rRNA genes and subsequently quantified by fluorescence in situ hybridization. In all cases, toluene-grown communities were dominated by members of the Gammaproteobacteria, followed in some enrichments by metabolically active alphaproteobacteria as well as members of the Bacteroidetes. From these enrichments, two novel denitrifying toluene-degrading strains belonging to the Gammaproteobacteria were isolated. Two additional toluene-degrading denitrifying strains were isolated from sediments from the Black Sea and the North Sea. These isolates belonged to the Alphaproteobacteria and Gammaproteobacteria. Serial dilutions series with marine sediments indicated that up to 2.2×10(4) cells cm(-3) were able to degrade hydrocarbons with nitrate as the electron acceptor. These results demonstrated the hitherto unrecognized capacity of alpha- and gammaproteobacteria in marine sediments to oxidize toluene using nitrate.


Subject(s)
Alphaproteobacteria/metabolism , Aquatic Organisms , Gammaproteobacteria/metabolism , Nitrates/metabolism , Toluene/metabolism , Atlantic Ocean , Black Sea , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Mediterranean Sea , Molecular Sequence Data , North Sea , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Environ Microbiol ; 13(9): 2576-86, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21880102

ABSTRACT

Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the ß-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.


Subject(s)
Alkanes/metabolism , Bacteria, Anaerobic/metabolism , Toluene/metabolism , Bacteria, Anaerobic/growth & development , Biodegradation, Environmental , Fumarates/metabolism , Succinates/metabolism
11.
Environ Microbiol ; 13(5): 1370-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21392199

ABSTRACT

Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.


Subject(s)
Archaea/classification , Hydrogensulfite Reductase/metabolism , Methane/metabolism , Microbial Consortia , Sulfur-Reducing Bacteria/enzymology , Amino Acid Sequence , Anaerobiosis , Archaea/genetics , Archaea/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Black Sea , Deltaproteobacteria/classification , Deltaproteobacteria/enzymology , Hydrogensulfite Reductase/isolation & purification , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/isolation & purification , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Sulfate Adenylyltransferase/isolation & purification , Sulfate Adenylyltransferase/metabolism , Sulfates/metabolism , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics
12.
Nature ; 427(6977): 829-32, 2004 Feb 26.
Article in English | MEDLINE | ID: mdl-14985759

ABSTRACT

Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of 'cathodic hydrogen' formed on iron in contact with water. Among SRB, Desulfovibrio species--with their capacity to consume hydrogen effectively--are conventionally regarded as the main culprits of anaerobic corrosion; however, the underlying mechanisms are complex and insufficiently understood. Here we describe novel marine, corrosive types of SRB obtained via an isolation approach with metallic iron as the only electron donor. In particular, a Desulfobacterium-like isolate reduced sulphate with metallic iron much faster than conventional hydrogen-scavenging Desulfovibrio species, suggesting that the novel surface-attached cell type obtained electrons from metallic iron in a more direct manner than via free hydrogen. Similarly, a newly isolated Methanobacterium-like archaeon produced methane with iron faster than do known hydrogen-using methanogens, again suggesting a more direct access to electrons from iron than via hydrogen consumption.


Subject(s)
Bacteria, Anaerobic/classification , Bacteria, Anaerobic/metabolism , Iron/metabolism , Anaerobiosis , Bacteria, Anaerobic/cytology , Bacteria, Anaerobic/genetics , Corrosion , Desulfovibrio/classification , Desulfovibrio/cytology , Desulfovibrio/genetics , Desulfovibrio/metabolism , Electrons , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hydrogen/metabolism , Iron/chemistry , Molecular Sequence Data , North Sea , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism
13.
Nature ; 426(6968): 878-81, 2003 Dec 18.
Article in English | MEDLINE | ID: mdl-14685246

ABSTRACT

Anaerobic oxidation of methane (AOM) in marine sediments is an important microbial process in the global carbon cycle and in control of greenhouse gas emission. The responsible organisms supposedly reverse the reactions of methanogenesis, but cultures providing biochemical proof of this have not been isolated. Here we searched for AOM-associated cell components in microbial mats from anoxic methane seeps in the Black Sea. These mats catalyse AOM rather than carry out methanogenesis. We extracted a prominent nickel compound displaying the same absorption spectrum as the nickel cofactor F430 of methyl-coenzyme M reductase, the terminal enzyme of methanogenesis; however, the nickel compound exhibited a higher molecular mass than F430. The apparent variant of F(430) was part of an abundant protein that was purified from the mat and that consists of three different subunits. Determined amino-terminal amino acid sequences matched a gene locus cloned from the mat. Sequence analyses revealed similarities to methyl-coenzyme M reductase from methanogenic archaea. The abundance of the nickel protein (7% of extracted proteins) in the mat suggests an important role in AOM.


Subject(s)
Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Geologic Sediments/microbiology , Metalloproteins/chemistry , Metalloproteins/metabolism , Methane/metabolism , Nickel/analysis , Amino Acid Sequence , Anaerobiosis , Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Deltaproteobacteria/metabolism , Geologic Sediments/chemistry , Methanosarcinales/metabolism , Molecular Sequence Data , Oceans and Seas , Phylogeny , Protein Subunits/chemistry , Protein Subunits/metabolism
14.
Environ Microbiol ; 11(1): 209-19, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18811643

ABSTRACT

The anaerobic biodegradation of naphthalene, an aromatic hydrocarbon in tar and petroleum, has been repeatedly observed in environments but scarcely in pure cultures. To further explore the relationships and physiology of anaerobic naphthalene-degrading microorganisms, sulfate-reducing bacteria (SRB) were enriched from a Mediterranean sediment with added naphthalene. Two strains (NaphS3, NaphS6) with oval cells were isolated which showed naphthalene-dependent sulfate reduction. According to 16S rRNA gene sequences, both strains were Deltaproteobacteria and closely related to each other and to a previously described naphthalene-degrading sulfate-reducing strain (NaphS2) from a North Sea habitat. Other close relatives were SRB able to degrade alkylbenzenes, and phylotypes enriched anaerobically with benzene. If in adaptation experiments the three naphthalene-grown strains were exposed to 2-methylnaphthalene, this compound was utilized after a pronounced lag phase, indicating that naphthalene did not induce the capacity for 2-methylnaphthalene degradation. Comparative denaturing gel electrophoresis of cells grown with naphthalene or 2-methylnaphthalene revealed a striking protein band which was only present upon growth with the latter substrate. Peptide sequences from this band perfectly matched those of a protein predicted from genomic libraries of the strains. Sequence similarity (50% identity) of the predicted protein to the large subunit of the toluene-activating enzyme (benzylsuccinate synthase) from other anaerobic bacteria indicated that the detected protein is part of an analogous 2-methylnaphthalene-activating enzyme. The absence of this protein in naphthalene-grown cells together with the adaptation experiments as well as isotopic metabolite differentiation upon growth with a mixture of d(8)-naphthalene and unlabelled 2-methylnaphthalene suggest that the marine strains do not metabolize naphthalene by initial methylation via 2-methylnaphthalene, a previously suggested mechanism. The inability to utilize 1-naphthol or 2-naphthol also excludes these compounds as free intermediates. Results leave open the possibility of naphthalene carboxylation, another previously suggested activation mechanism.


Subject(s)
Deltaproteobacteria/classification , Deltaproteobacteria/metabolism , Geologic Sediments/microbiology , Naphthalenes/metabolism , Anaerobiosis , Bacterial Proteins/analysis , Biotransformation , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Deltaproteobacteria/chemistry , Deltaproteobacteria/isolation & purification , Electrophoresis, Polyacrylamide Gel , Genes, rRNA , Mediterranean Sea , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sulfates/metabolism , Sulfides/metabolism
15.
J Am Chem Soc ; 130(32): 10758-67, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-18642902

ABSTRACT

Microbial mats collected at cold methane seeps in the Black Sea carry out anaerobic oxidation of methane (AOM) to carbon dioxide using sulfate as the electron acceptor. These mats, which predominantly consist of sulfate-reducing bacteria and archaea of the ANME-1 and ANME-2 type, contain large amounts of proteins very similar to methyl-coenzyme M reductase from methanogenic archaea. Mass spectrometry of mat samples revealed the presence of two nickel-containing cofactors in comparable amounts, one with the same mass as coenzyme F430 from methanogens (m/z = 905) and one with a mass that is 46 Da higher (m/z = 951). The two cofactors were isolated and purified, and their constitution and absolute configuration were determined. The cofactor with m/z = 905 was proven to be identical to coenzyme F430 from methanogens. For the m/z = 951 species, high resolution ICP-MS pointed to F430 + CH2S as the molecular formula, and LA-ICP-SF MS finally confirmed the presence of one sulfur atom per nickel. Esterification gave two stereoisomeric pentamethyl esters with m/z = 1021, which could be purified by reverse phase HPLC and were subjected to comprehensive NMR analysis, allowing determination of their constitution and configuration as (17(2)S)-17(2)-methylthio-F430 pentamethyl ester and (17(2)R)-17(2)-methylthio-F430 pentamethyl ester. The corresponding diastereoisomeric pentaacids could also be separated by HPLC and were correlated to the esters via mild hydrolysis of the latter. Equilibration of the pentaacids under acid catalysis showed that the (17(2)S) isomer is the naturally occurring albeit thermodynamically less stable one. The more stable (17(2)R) isomer (80% at equilibrium) is an isolation artifact generated under the acidic conditions necessary for the isolation of the cofactors from the calcium carbonate-encrusted mats.


Subject(s)
Metalloporphyrins/chemistry , Methane/metabolism , Methanobacteriaceae/enzymology , Anaerobiosis , Carbon Dioxide/metabolism , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Metalloporphyrins/genetics , Molecular Structure , Mutation , Oxidation-Reduction , Stereoisomerism
16.
Environ Microbiol ; 10(1): 10-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18211263

ABSTRACT

The anaerobic biodegradation of benzene, a common constituent of petroleum and one of the least reactive aromatic hydrocarbons, is insufficiently understood with respect to the involved microorganisms and their metabolism. To study these aspects, sulfate-reducing bacteria were enriched with benzene as sole organic substrate using marine sediment as inoculum. Repeated subcultivation yielded a sediment-free enrichment culture constituted of mostly oval-shaped cells and showing benzene-dependent sulfate reduction and growth under strictly anoxic conditions. Amplification and sequencing of 16S rRNA genes from progressively diluted culture samples revealed an abundant phylotype; this was closely related to a clade of Deltaproteobacteria that includes sulfate-reducing bacteria able to degrade naphthalene or other aromatic hydrocarbons. Cell hybridization with two specifically designed 16S rRNA-targeted fluorescent oligonucleotide probes showed that the retrieved phylotype accounted for more than 85% of the cells detectable via DAPI staining (general cell staining) in the enrichment culture. The result suggests that the detected dominant phylotype is the 'candidate species' responsible for the anaerobic degradation of benzene. Quantitative growth experiments revealed complete oxidation of benzene with stoichiometric coupling to the reduction of sulfate to sulfide. Suspensions of benzene-grown cells did not show metabolic activity towards phenol or toluene. This observation suggests that benzene degradation by the enriched sulfate-reducing bacteria does not proceed via anaerobic hydroxylation (mediated through dehydrogenation) to free phenol or methylation to toluene, respectively, which are formerly proposed alternative mechanisms for benzene activation.


Subject(s)
Benzene/metabolism , Deltaproteobacteria/metabolism , Geologic Sediments/microbiology , Sulfates/metabolism , Anaerobiosis , Benzene/chemistry , Culture Media , Deltaproteobacteria/growth & development , Phenol/chemistry , Phenol/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/chemistry , Toluene/chemistry , Toluene/metabolism
17.
Environ Microbiol ; 10(2): 376-85, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17961174

ABSTRACT

Strain HxN1, a member of the Betaproteobacteria, can grow anaerobically by denitrification with n-alkanes. n-Alkanes are apparently activated by subterminal carbon addition to fumarate yielding (1-methylalkyl)succinates, the postulated enzyme being (1-methylalkyl)succinate synthase (Mas). Genes encoding this enzyme (mas) were searched for via proteins that were specifically formed in n-hexane-grown cells (in comparison with caproate-grown cells), as revealed by two-dimensional gel electrophoresis. Partial amino acid sequencing and subsequent probe development for hybridization of restricted DNA led to the identification of a gene cluster. Deduced proteins are similar to the subunits of benzylsuccinate synthase (Bss), the toluene-activating enzyme in other anaerobic bacteria and its activase. The tentative (1-methylalkyl)succinate synthase is presumably a heterotrimer (MasDEC) which, like benzylsuccinate synthase, contains a motif (in MasD, the large subunit) characteristic of glycyl radical-bearing sites. Based on amino acid sequence comparison, the tentative (1-methylalkyl)succinate synthase branches outside of the phylogenetic cluster of benzylsuccinate synthases from different organisms and represents a separate line of descent within glycyl radical enzymes. n-Hexane-induced co-transcription of the mas genes and additional genes of an apparent operon was demonstrated by Northern hybridization experiments.


Subject(s)
Alkanes/metabolism , Betaproteobacteria/enzymology , Carbon-Carbon Lyases/metabolism , Genes, Bacterial , Nitrites/metabolism , Succinates/metabolism , Anaerobiosis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Betaproteobacteria/genetics , Betaproteobacteria/growth & development , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Bacterial , Hexanes/metabolism , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA
19.
ISME J ; 5(12): 1946-56, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21697963

ABSTRACT

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.


Subject(s)
Geologic Sediments/microbiology , Methane/metabolism , Microbial Consortia , Seawater/microbiology , Anaerobiosis , Archaea/classification , Archaea/genetics , Archaea/growth & development , Beggiatoa/genetics , Beggiatoa/isolation & purification , Beggiatoa/metabolism , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , Ecosystem , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/growth & development
20.
Environ Microbiol Rep ; 3(1): 125-135, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21837252

ABSTRACT

Microorganisms can degrade saturated hydrocarbons (alkanes) not only under oxic but also under anoxic conditions. Three denitrifying isolates (strains HxN1, OcN1, HdN1) able to grow under anoxic conditions by coupling alkane oxidation to CO(2) with NO(3) (-) reduction to N(2) were compared with respect to their alkane metabolism. Strains HxN1 and OcN1, which are both Betaproteobacteria, utilized n-alkanes from C(6) to C(8) and C(8) to C(12) respectively. Both activate alkanes anaerobically in a fumarate-dependent reaction yielding alkylsuccinates, as suggested by present and previous metabolite and gene analyses. However, strain HdN1 was unique in several respects. It belongs to the Gammaproteobacteria and was more versatile towards alkanes, utilizing the range from C(6) to C(30). Neither analysis of metabolites nor analysis of genes in the complete genome sequence of strain HdN1 hinted at fumarate-dependent alkane activation. Moreover, whereas strains HxN1 and OcN1 grew with alkanes and NO(3) (-), NO(2) (-) or N(2)O added to the medium, strain HdN1 oxidized alkanes only with NO(3) (-) or NO(2) (-) but not with added N(2)O; but N(2)O was readily used for growth with long-chain alcohols or fatty acids. Results suggest that NO(2) (-) or a subsequently formed nitrogen compound other than N(2)O is needed for alkane activation in strain HdN1. From an energetic point of view, nitrogen-oxygen species are generally rather strong oxidants. They may enable enzymatic mechanisms that are not possible under conditions of sulfate reduction or methanogenesis and thus allow a special mode of alkane activation.

SELECTION OF CITATIONS
SEARCH DETAIL