Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37562403

ABSTRACT

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Subject(s)
Bryophyta , Climate Change , Ecosystem , Acclimatization , Adaptation, Physiological , Tibet , Bryophyta/physiology
2.
EMBO J ; 43(18): 4092-4109, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39090438

ABSTRACT

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.


Subject(s)
Plant Proteins , Plant Proteins/metabolism , Plant Proteins/genetics , Marchantia/genetics , Marchantia/metabolism , Coumaric Acids/metabolism , Trans-Cinnamate 4-Monooxygenase/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics , Anthocerotophyta/genetics , Anthocerotophyta/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Bryopsida/growth & development , Bryopsida/enzymology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phylogeny , Embryophyta/genetics , Embryophyta/metabolism , Propionates/metabolism , Propanols/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201242

ABSTRACT

In this study, we present the design, implementation, and successful use of digital droplet PCR (ddPCR) for the monitoring of chimeric antigen receptor T-cell (CAR-T) expansion in patients with B-cell malignancies treated with different CAR-T products at our clinical center. Initially, we designed a specific and highly sensitive ddPCR assay targeting the junction between the 4-1BB and CD3ζ domains of tisa-cel, normalized with RPP30, and validated it using blood samples from the first tisa-cel-treated patient in Switzerland. We further compared this assay with a published qPCR (quantitative real-time PCR) design. Both assays showed reliable quantification of CAR-T copies down to 20 copies/µg DNA. The reproducibility and precision were confirmed through extensive testing and inter-laboratory comparisons. With the introduction of other CAR-T products, we also developed a corresponding ddPCR assay targeting axi-cel and brexu-cel, demonstrating high specificity and sensitivity with a limit of detection of 20 copies/µg DNA. These assays are suitable for CAR-T copy number quantification across multiple sample types, including peripheral blood, bone marrow, and lymph node biopsy material, showing robust performance and indicating the presence of CAR-T cells not only in the blood but also in target tissues. Longitudinal monitoring of CAR-T cell kinetics in 141 patients treated with tisa-cel, axi-cel, or brexu-cel revealed significant expansion and long-term persistence. Peak expansion correlated with clinical outcomes and adverse effects, as is now well known. Additionally, we quantified the CAR-T mRNA expression, showing a high correlation with DNA copy numbers and confirming active transgene expression. Our results highlight the quality of ddPCR for CAR-T monitoring, providing a sensitive, precise, and reproducible method suitable for clinical applications. This approach can be adapted for future CAR-T products and will support the monitoring and the management of CAR-T cell therapies.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Kinetics , Reproducibility of Results , Polymerase Chain Reaction/methods , Sensitivity and Specificity
4.
BMC Cancer ; 23(1): 345, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061680

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment landscape of relapsed/refractory multiple myeloma (RRMM), leading to unprecedented responses in this patient population. Idecabtagene vicleucel (ide-cel) has been recently approved for treatment of triple-class exposed RRMM. We report real-life experiences with the commercial use of ide-cel in RRMM patients. METHODS: We performed a retrospective analysis of the first 16 triple-class exposed RRMM patients treated with ide-cel at a single academic center. We assessed toxicities, response to treatment, CAR T expansion and soluble BCMA (sBCMA) levels. RESULTS: We identified 16 consecutive RRMM patients treated with ide-cel between 06-10/2022. Median age was 69 years, 6 (38%) patients had high-risk cytogenetics, 3 (19%) R-ISS stage III, and 5 (31%) extramedullary disease. Median number of previous treatment lines was 6 (3-12). Manufacturing success rate was 88% (6% required second lymphapheresis, 6% received an out-of-specification product). At 3 months, the overall response rate (ORR) was 69% (44% sCR, 6% CR, 19% VGPR). Cytokine release syndrome (CRS) occurred in 15 (94%) patients (88% G1, 6% G2), immune effector-cell associated neurotoxicity syndrome (ICANS) in 1 (6% G1), febrile neutropenia in 11 (69%), and infections in 5 (31%). Prolonged hematologic toxicity occurred in 4/16 (25%) patients. Other non-hematological toxicities were elevated hepatic enzymes (38%), colitis (6%, G3) and DIC (6%, G2). Responses were more frequent in patients with higher CAR T expansion (100% vs 38%), and lack of decrease or plateau of sBCMA levels was typically observed in non-responders. CONCLUSIONS: We report one of the first cohorts of RRMM treated with commercial ide-cel. The ORR was 69% and safety profile was manageable, but prolonged hematologic toxicity still represents a major challenge. Responses correlated with in vivo CAR T cell expansion, underlining the need of further research to optimize CAR T expansion.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Aged , Immunotherapy, Adoptive/adverse effects , Multiple Myeloma/therapy , Retrospective Studies
5.
Hematol Oncol ; 41(5): 912-921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37452600

ABSTRACT

Until now, next generation sequencing (NGS) data has not been incorporated into any prognostic stratification of multiple myeloma (MM) and no therapeutic considerations are based upon it. In this work, we correlated NGS data with (1) therapy response and survival parameters in newly diagnosed multiple myeloma, treated by VRd * and (2) MM disease stage: newly diagnosed multiple myeloma (ndMM) versus relapsed and/or refractory (relapsed/refractory multiple myeloma). We analyzed 126 patients, with ndMM and relapsed refractory multiple myeloma (rrMM), treated at the University Hospital of Bern (Inselspital). Next generation sequencing was performed on bone marrow, as part of routine diagnostics. The NGS panel comprised eight genes CCND1, DIS3, EGR1, FAM46C (TENT5C), FGFR3, PRDM1, TP53, TRAF3 and seven hotspots in BRAF, IDH1, IDH2, IRF4, KRAS, NRAS. The primary endpoint was complete remission (CR) after VRd in ndMM, in correlation with mutational profile. Mutational load was generally higher in rrMM, with more frequently mutated TP53: 11/87 (13%) in ndMM versus 9/11 (81%) in rrMM (OR 0.0857, p = 0.0007). In ndMM, treated by VRd, mutations in MAPK-pathway members (NRAS, KRAS or BRAF) were associated with reduced probability of CR (21/38, 55%), as compared with wild type NRAS, KRAS or BRAF (34/40, 85%; OR 0.2225, p = 0.006). NRAS c.181C > A (p.Q61K) as a single mutation event showed a trend to reduced probability of achieving CR (OR 0.0912, p = 0.0247). Activation of MAPK pathway via mutated NRAS, KRAS and BRAF genes seems to have a negative impact on outcome in ndMM patients receiving VRd therapy. VRd* - bortezomib (Velcade®), lenalidomide (Revlimid®) and dexamethasone.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/therapeutic use , Bortezomib/therapeutic use , Lenalidomide/therapeutic use , Mutation , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/therapeutic use
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982764

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has led to profound and durable tumor responses in a relevant subset of patients with relapsed/refractory (r/r) B-cell lymphomas. Still, some patients show insufficient benefit or relapse after CAR T-cell therapy. We performed a retrospective study to investigate the correlation between CAR T-cell persistence in the peripheral blood (PB) at 6 months, assessed by droplet digital PCR (ddPCR), with CAR T-cell treatment outcome. 92 patients with r/r B-cell lymphomas were treated with CD19-targeting CAR T-cell therapies at our institution between 01/2019-08/2022. Six months post-treatment, 15 (16%) patients had no detectable circulating CAR-T constructs by ddPCR. Patients with CAR T-cell persistence had a significantly higher CAR T-cell peak (5432 vs. 620 copies/ug cfDNA, p = 0.0096), as well as higher incidence of immune effector cell-associated neurotoxicity syndrome (37% vs. 7%, p = 0.0182). After a median follow-up of 8.5 months, 31 (34%) patients relapsed. Lymphoma relapses were less frequent among patients with CAR T-cell persistence (29% vs. 60%, p = 0.0336), and CAR T-cell persistence in the PB at 6 months was associated with longer progression-free survival (PFS) (HR 2.79, 95% CI: 1.09-7.11, p = 0.0319). Moreover, we observed a trend towards improved overall survival (OS) (HR 1.99, 95% CI: 0.68-5.82, p = 0.2092) for these patients. In our cohort of 92 B-cell lymphomas, CAR T-cell persistence at 6 months was associated with lower relapse rates and longer PFS. Moreover, our data confirm that 4-1BB-CAR T-cells have a longer persistence as compared to CD-28-based CAR T-cells.


Subject(s)
Lymphoma, B-Cell , T-Lymphocytes , Humans , Retrospective Studies , Neoplasm Recurrence, Local/etiology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/etiology , Immunotherapy, Adoptive/adverse effects
7.
Curr Issues Mol Biol ; 44(4): 1463-1471, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35723356

ABSTRACT

BACKGROUND: Novel chimeric antigen receptor T-cells (CAR-T) target the B-cell maturation antigen (BCMA) expressed on multiple myeloma cells. Assays monitoring CAR-T cell expansion and treatment response are being implemented in clinical routine. METHODS: Plasma levels of soluble BCMA (sBCMA) and anti-BCMA CAR-T cell copy numbers were monitored in the blood, following CAR-T cell infusion in patients with relapsed multiple myeloma. sBCMA peptide concentration was determined in the plasma, applying a human BCMA/TNFRS17 ELISA. ddPCR was performed using probes targeting the intracellular signaling domains 4-1BB und CD3zeta of the anti-BCMA CAR-T construct. RESULTS: We report responses in the first five patients who received anti-BCMA CAR- T cell therapy at our center. Four patients achieved a complete remission (CR) in the bone marrow one month after CAR-T infusion, with three patients achieving stringent CR, determined by flow cytometry techniques. Anti-BCMA CAR-T cells were detectable in the peripheral blood for up to 300 days, with copy numbers peaking 7 to 14 days post-infusion. sBCMA plasma levels started declining one to ten days post infusion, reaching minimal levels 30 to 60 days post infusion, before rebounding to normal levels. CONCLUSIONS: Our data confirm a favorable response to treatment in four of the first five patients receiving anti-BCMA CAR-T at our hospital. Anti-BCMA CAR-T cell expansion seems to peak in the peripheral blood in a similar pattern compared to the CAR-T cell products already approved for lymphoma treatment. sBCMA plasma level may be a valid biomarker in assessing response to BCMA-targeting therapies in myeloma patients.

8.
Plant Cell Rep ; 41(1): 153-173, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34636965

ABSTRACT

KEY MESSAGE: In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.


Subject(s)
Bryopsida/genetics , Gene Targeting , Polyploidy , Transcription, Genetic
9.
Plant Cell ; 30(3): 717-736, 2018 03.
Article in English | MEDLINE | ID: mdl-29514942

ABSTRACT

RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.


Subject(s)
Arabidopsis/metabolism , Bryopsida/metabolism , DNA Repair/genetics , Plant Proteins/metabolism , RecQ Helicases/metabolism , Arabidopsis/genetics , Bryopsida/genetics , Genome, Plant/genetics , Phylogeny , Plant Proteins/genetics , RecQ Helicases/genetics
10.
Hematol Oncol ; 38(4): 425-431, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32306411

ABSTRACT

Relapse of acute myeloid leukemia (AML) remains a major determinant of outcome. A number of molecularly directed treatment options have recently emerged making comprehensive diagnostics an important pillar of clinical decision making at relapse. Acknowledging the high degree of individual genetic variability at AML relapse, next-generation sequencing (NGS) has opened the opportunity for assessing the unique clonal hierarchy of individual AML patients. Knowledge on the genetic makeup of AML is reflected in patient customized treatment strategies thereby providing improved outcomes. For example, the emergence of druggable mutations at relapse enable the use of novel targeted therapies, including FLT3 inhibitors or the recently approved IDH1/2 inhibitors ivosidenib and enasidenib, respectively. Consequently, some patients may undergo novel bridging approaches for reinduction before allogeneic stem cell transplantation, or the identification of an adverse prognostic marker may initiate early donor search. In this review, we summarize the current knowledge of NGS in identifying clonal stability, clonal evolution, and clonal devolution in the context of AML relapse. In light of recent improvements in AML treatment options, NGS-based molecular diagnostics emerges as the basis for molecularly directed treatment decisions in patients at relapse.


Subject(s)
Antineoplastic Agents/therapeutic use , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/drug therapy , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/drug therapy , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology
11.
J Proteome Res ; 17(11): 3749-3760, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30226384

ABSTRACT

Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.


Subject(s)
Aspartic Acid Proteases/isolation & purification , Bryopsida/enzymology , Metalloproteases/isolation & purification , Plant Proteins/isolation & purification , Protease Inhibitors/isolation & purification , Serpins/isolation & purification , Subtilisins/isolation & purification , Aspartic Acid Proteases/classification , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Bioreactors , Bryopsida/chemistry , Bryopsida/genetics , Computational Biology , Gene Knockout Techniques , Mass Spectrometry/methods , Metalloproteases/classification , Metalloproteases/genetics , Metalloproteases/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Protease Inhibitors/classification , Protease Inhibitors/metabolism , Protein Array Analysis , Proteolysis , Serpins/classification , Serpins/genetics , Serpins/metabolism , Subtilisins/classification , Subtilisins/genetics , Subtilisins/metabolism
12.
Biochim Biophys Acta ; 1859(7): 860-70, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27179444

ABSTRACT

Packaging of eukaryotic DNA largely depends on histone modifications that affect the accessibility of DNA to transcriptional regulators, thus controlling gene expression. The Polycomb group (PcG) chromatin remodeling complex deposits a methyl group on lysine 27 of histone 3 leading to repressed gene expression. Plants encode homologs of the Enhancer of zeste (E(z)), a component of the PcG complex from Drosophila, one of which is a SET domain protein designated CURLY LEAF (CLF). Although this SET domain protein exhibits a strong correlation with the presence of the H3K27me3 mark in plants, the methyl-transferase activity and specificity of its SET domain have not been directly tested in-vivo. Using the evolutionary early-diverged land plant model species Physcomitrella patens we show that abolishment of a single copy gene PpCLF, as well as an additional member of the PcG complex, FERTILIZATION-INDEPENDENT ENDOSPERM (PpFIE), results in a specific loss of tri-methylation of H3K27. Using site-directed mutagenesis of key residues, we revealed that H3K27 tri-methylation is mediated by the SET domain of the CLF protein. Moreover, the abolishment of H3K27me3 led to enhanced expression of transcription factor genes. This in turn led to the development of fertilization-independent sporophyte-like structures, as observed in PpCLF and PpFIE null mutants. Overall, our results demonstrate the role of PpCLF as a SET protein in tri-methylation of H3K27 in-vivo and the importance of this modification in regulating the expression of transcription factor genes involved in developmental programs of P. patens.


Subject(s)
Bryopsida/growth & development , Bryopsida/genetics , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Polycomb-Group Proteins/physiology , Amino Acid Sequence , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Homeodomain Proteins/physiology , Lysine/metabolism , Methylation , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Sequence Homology, Amino Acid
13.
New Phytol ; 216(2): 455-468, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28262967

ABSTRACT

In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-ß-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.


Subject(s)
Biological Evolution , Bryopsida/microbiology , Bryopsida/physiology , Disease Resistance , Lactones/metabolism , Phosphates/deficiency , Plant Diseases/microbiology , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Dioxygenases/metabolism , Disease Susceptibility , Gene Knockout Techniques , Germination , Heterocyclic Compounds, 3-Ring/metabolism , Mutation/genetics , Plant Proteins/metabolism , Stereoisomerism
14.
Plant J ; 79(3): 530-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24889180

ABSTRACT

The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.


Subject(s)
Bryopsida/growth & development , Bryopsida/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcriptome/genetics , Bryopsida/physiology , Gene Expression Profiling , Phylogeny , Real-Time Polymerase Chain Reaction
15.
Plant Mol Biol ; 88(4-5): 387-400, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25944663

ABSTRACT

DNA methylation has a crucial role in plant development regulating gene expression and silencing of transposable elements. Maintenance DNA methylation in plants occurs at symmetrical (m)CG and (m)CHG contexts ((m) = methylated) and is maintained by DNA METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE (CMT) DNA methyltransferase protein families, respectively. While angiosperm genomes encode for several members of MET1 and CMT families, the moss Physcomitrella patens, serving as a model for early divergent land plants, carries a single member of each family. To determine the function of P. patens PpMET we generated ΔPpmet deletion mutant which lost (m)CG and unexpectedly (m)CCG methylation at loci tested. In order to evaluate the extent of (m)CCG methylation by MET1, we reexamined the Arabidopsis thaliana Atmet1 mutant methylome and found a similar pattern of methylation loss, suggesting that maintenance of DNA methylation by MET1 is conserved through land plant evolution. While ΔPpmet displayed no phenotypic alterations during its gametophytic phase, it failed to develop sporophytes, indicating that PpMET plays a role in gametogenesis or early sporophyte development. Expression array analysis revealed that the deletion of PpMET resulted in upregulation of two genes and multiple repetitive sequences. In parallel, expression analysis of the previously reported ΔPpcmt mutant showed that lack of PpCMT triggers overexpression of genes. This overexpression combined with loss of (m)CHG and its pleiotropic phenotype, implies that PpCMT has an essential evolutionary conserved role in the epigenetic control of gene expression. Collectively, our results suggest functional conservation of MET1 and CMT families during land plant evolution. A model describing the relationship between MET1 and CMT in CCG methylation is presented.


Subject(s)
Bryopsida/genetics , Bryopsida/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Plant Proteins/metabolism , Alcohol Oxidoreductases , Base Sequence , Bryopsida/growth & development , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Molecular Sequence Data , Mutation , Plant Proteins/genetics , Plants, Genetically Modified
16.
New Phytol ; 205(2): 869-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25209349

ABSTRACT

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.


Subject(s)
Acclimatization/genetics , Bryopsida/physiology , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Acclimatization/physiology , Bryopsida/genetics , Bryopsida/growth & development , Cold Temperature , Gene Ontology , Reproducibility of Results , Signal Transduction/genetics , Transcriptome
17.
J Biol Chem ; 288(4): 2767-77, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23223578

ABSTRACT

The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and characterized PpORS from the moss Physcomitrella. PpORS has been proposed to closely resemble the most recent common ancestor of the plant type III PKSs. PpORS condenses a very long chain fatty acyl-CoA with four molecules of malonyl-CoA and catalyzes decarboxylative aldol cyclization to yield the pentaketide 2'-oxoalkylresorcinol. Therefore, PpORS is a 2'-oxoalkylresorcinol synthase. Structure modeling and sequence alignments identified a unique set of amino acid residues (Gln(218), Val(277), and Ala(286)) at the putative PpORS active site. Substitution of the Ala(286) to Phe apparently constricted the active site cavity, and the A286F mutant instead produced triketide alkylpyrones from fatty acyl-CoA substrates with shorter chain lengths. Phylogenetic analysis and comparison of the active sites of PpORS and alkylresorcinol synthases from sorghum and rice suggested that the gramineous enzymes evolved independently from PpORS to have similar functions but with distinct active site architecture. Microarray analysis revealed that PpORS is exclusively expressed in nonprotonemal moss cells. The in planta function of PpORS, therefore, is probably related to a nonprotonemal structure, such as the cuticle.


Subject(s)
Bryopsida/metabolism , Polyketide Synthases/metabolism , Acyl Coenzyme A/chemistry , Binding Sites , Catalysis , Catalytic Domain , Cloning, Molecular , Expressed Sequence Tags , Gene Expression Regulation, Enzymologic , Kinetics , Models, Chemical , Mutagenesis, Site-Directed , Mutation , Oligonucleotide Array Sequence Analysis , Phylogeny , Polyketide Synthases/chemistry , Protein Binding , Recombinant Proteins/chemistry
20.
Turk J Haematol ; 40(3): 187-196, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37519105

ABSTRACT

Cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are significant complications in patients with relapsed/refractory diffuse large B-cell lymphoma undergoing chimeric antigen receptor T-cell (CAR-T cell) therapy. However, it remains unclear whether CAR-T cell expression itself is clinically relevant. We assessed CAR-T cell mRNA expression and DNA concentration by digital droplet PCR in peripheral blood from 14 sequential CAR-T cell recipients. Patients were grouped according to CAR-T cell peak expression. Patients with high CAR-T cell peak expression (8 patients; 57%) had higher rates of ICANS (p=0.0308) and intensive care unit admission (p=0.0404), longer durations of hospitalization (p=0.0077), and, although not statistically significant, a higher rate of CRS (p=0.0778). There was a correlation of CAR-T cell mRNA expression with DNA concentration, but CAR-T cell expression levels failed to correlate to response or survival. Our data suggest that higher CAR-T cell peak mRNA expression is associated with increased risk for ICANS and possibly CRS, requiring further investigation in larger studies.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Immunotherapy, Adoptive/adverse effects , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL