Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Infect Dis ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809190

ABSTRACT

BACKGROUND: Although polioviruses (PVs) replicate in lymphoid tissue of both the pharynx and ileum, research on polio vaccine-induced mucosal immunity has predominantly focused on intestinal neutralizing and binding antibody levels measured in stool. METHODS: To investigate the extent to which routine immunization with intramuscularly injected inactivated polio vaccine (IPV) may induce nasal and pharyngeal mucosal immunity, we measured PV type-specific neutralization and immunoglobulin (Ig) G, IgA, and IgM levels in nasal secretions, adenoid cell supernatants, and sera collected from 12 children, aged 2 to 5 years, undergoing planned adenoidectomies. All participants were routinely immunized with IPV and had no known contact with live PVs. RESULTS: PV-specific mucosal neutralization was detected in nasal and adenoid samples, mostly from children who had previously received four IPV doses. Across the three PV serotypes, both nasal (Spearman's rho ≥ 0.87, p≤0.0003 for all) and adenoid (Spearman's rho ≥0.57, p≤0.05 for all) neutralization titers correlated with serum neutralization titers. In this small study sample, there was insufficient evidence to determine which Ig isotype(s) was correlated with neutralization. CONCLUSIONS: Our findings provide policy-relevant evidence that routine immunization with IPV may induce nasal and pharyngeal mucosal immunity. The observed correlations of nasal and pharyngeal mucosal neutralization with serum neutralization contrast with previous observations of distinct intestinal and serum responses to PV vaccines. Further research is warranted to determine which antibody isotype(s) correlate with polio vaccine-induced nasal and pharyngeal mucosal neutralizing activity and to understand the differences from intestinal mucosal immunity.

2.
Pathog Immun ; 9(2): 1-24, 2024.
Article in English | MEDLINE | ID: mdl-38933606

ABSTRACT

Background: Fcγ-receptor (FcγR)-independent enhancement of SARS-CoV-2 infection mediated by N-terminal domain (NTD)-binding monoclonal antibodies (mAbs) has been observed in vitro, but the functional significance of these antibodies in vivo is less clear. Methods: We characterized 1,213 SARS-CoV-2 spike (S)-binding mAbs derived from COVID-19 convalescent patients for binding specificity to the SARS-CoV-2 S protein, VH germ-line usage, and affinity maturation. Infection enhancement in a vesicular stomatitis virus (VSV)-SARS-CoV-2 S pseudovirus (PV) assay was characterized in respiratory and intestinal epithelial cell lines, and against SARS-CoV-2 variants of concern (VOC). Proteomic deconvolution of the serum antibody repertoire was used to determine functional attributes of secreted NTD-binding mAbs. Results: We identified 72/1213 (5.9%) mAbs that enhanced SARS-CoV-2 infection in a PV assay. The majority (68%) of these mAbs recognized the NTD, were identified in patients with mild and severe disease, and persisted for at least 5 months post-infection. Infection enhancement by NTD-binding mAbs was not observed in intestinal and respiratory epithelial cell lines and was diminished or lost against SARS-CoV-2 VOC. Proteomic deconvolution of the serum antibody repertoire from 2 of the convalescent patients identified, for the first time, NTD-binding, infection-enhancing mAbs among the circulating immunoglobulins directly isolated from serum. Functional analysis of these mAbs demonstrated robust activation of FcγRIIIa associated with antibody binding to recombinant S proteins. Conclusions: Functionally active NTD-specific mAbs arise frequently during natural infection and can last as major serum clonotypes during convalescence. These antibodies display functional attributes that include FcγR activation, and may be selected against by mutations in NTD associated with SARS-CoV-2 VOC.

SELECTION OF CITATIONS
SEARCH DETAIL