Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Respir Crit Care Med ; 209(12): 1477-1485, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38470220

ABSTRACT

Rationale: Chronic thromboembolic pulmonary hypertension involves the formation and nonresolution of thrombus, dysregulated inflammation, angiogenesis, and the development of a small-vessel vasculopathy. Objectives: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. Methods: We conducted a genome-wide association study on 1,907 European cases and 10,363 European control subjects. We coanalyzed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism, and idiopathic pulmonary arterial hypertension. Measurements and Main Results: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our coanalysis, we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2, and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. Conclusions: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations with pulmonary embolism and deep vein thrombosis.


Subject(s)
Genome-Wide Association Study , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Pulmonary Embolism/genetics , Pulmonary Embolism/complications , Hypertension, Pulmonary/genetics , Male , Female , Middle Aged , Chronic Disease , Genomics , Genetic Predisposition to Disease , Adult , Case-Control Studies , Aged , Venous Thrombosis/genetics
3.
Gigascience ; 132024 01 02.
Article in English | MEDLINE | ID: mdl-38991852

ABSTRACT

BACKGROUND: Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning-based functions. FINDINGS: The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit's decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements. CONCLUSIONS: In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/.


Subject(s)
Gene Expression Profiling , Software , Transcriptome , Cluster Analysis , Gene Expression Profiling/methods , Humans , Computational Biology/methods , Machine Learning , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Algorithms
4.
J Am Heart Assoc ; 13(6): e032256, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456412

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) exhibits phenotypic heterogeneity and variable response to therapy. The metabolome has been implicated in the pathogenesis of PAH, but previous works have lacked power to implicate specific metabolites. Mendelian randomization (MR) is a method for causal inference between exposures and outcomes. METHODS AND RESULTS: Using genome-wide association study summary statistics, we implemented MR analysis to test for potential causal relationships between serum concentration of 575 metabolites and PAH. Five metabolites were causally associated with the risk of PAH after multiple testing correction. Next, we measured serum concentration of candidate metabolites in an independent clinical cohort of 449 patients with PAH to check whether metabolite concentrations are correlated with markers of disease severity. Of the 5 candidates nominated by our MR work, serine was negatively associated and homostachydrine was positively associated with clinical severity of PAH via direct measurement in this independent clinical cohort. Finally we used conditional and orthogonal approaches to explore the biology underlying our lead metabolites. Rare variant burden testing was carried out using whole exome sequencing data from 578 PAH cases and 361 675 controls. Multivariable MR is an extension of MR that uses a single set of instrumental single-nucleotide polymorphisms to measure multiple exposures; multivariable MR is used to determine interdependence between the effects of different exposures on a single outcome. Rare variant analysis demonstrated that loss-of-function mutations within activating transcription factor 4, a transcription factor responsible for upregulation of serine synthesis under conditions of serine starvation, are associated with higher risk for PAH. Homostachydrine is a xenobiotic metabolite that is structurally related to l-proline betaine, which has previously been linked to modulation of inflammation and tissue remodeling in PAH. Our multivariable MR analysis suggests that the effect of l-proline betaine is actually mediated indirectly via homostachydrine. CONCLUSIONS: Our data present a method for study of the metabolome in the context of PAH, and suggests several candidates for further evaluation and translational research.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Follow-Up Studies , Familial Primary Pulmonary Hypertension/genetics , Serine
5.
Pulm Circ ; 14(2): e12386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38868397

ABSTRACT

A blood test identifying patients at increased risk of pulmonary hypertension (PH) could streamline the investigative pathway. The prospective, multicenter CIPHER study aimed to develop a microRNA-based signature for detecting PH in breathless patients and enrolled adults with a high suspicion of PH who had undergone right heart catheterization (RHC). The CIPHER-MRI study was added to assess the performance of this CIPHER signature in a population with low probability of having PH who underwent cardiac magnetic resonance imaging (cMRI) instead of RHC. The microRNA signature was developed using a penalized linear regression (LASSO) model. Data were modeled both with and without N-terminal pro-brain natriuretic peptide (NT-proBNP). Signature performance was assessed against predefined thresholds (lower 98.7% CI bound of ≥0.73 for sensitivity and ≥0.53 for specificity, based on a meta-analysis of echocardiographic data), using RHC as the true diagnosis. Overall, 926 CIPHER participants were screened and 888 were included in the analysis. Of 688 RHC-confirmed PH cases, approximately 40% were already receiving PH treatment. Fifty microRNA (from 311 investigated) were algorithmically selected to be included in the signature. Sensitivity [97.5% CI] of the signature was 0.85 [0.80-0.89] for microRNA-alone and 0.90 [0.86-0.93] for microRNA+NT-proBNP, and the corresponding specificities were 0.33 [0.24-0.44] and 0.28 [0.20-0.39]. Of 80 CIPHER-MRI participants with evaluable data, 7 were considered PH-positive by cMRI whereas 52 were considered PH-positive by the microRNA signature. Due to low specificity, the CIPHER miRNA-based signature for PH (either with or without NT-proBNP in model) did not meet the prespecified diagnostic threshold for the primary analysis.

6.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38626311

ABSTRACT

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Subject(s)
Endothelial Cells , Polyamines , Animals , Humans , Polyamines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Cell Proliferation , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Arterial Hypertension/enzymology , Pulmonary Arterial Hypertension/pathology , Apoptosis , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Endosomes/metabolism , Biological Transport , Disease Models, Animal , Cells, Cultured , Phenotype , Mice, Inbred C57BL , Mice
7.
Nat Commun ; 15(1): 330, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184627

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterised by pulmonary vascular remodelling causing premature death from right heart failure. Established DNA variants influence PAH risk, but susceptibility from epigenetic changes is unknown. We addressed this through epigenome-wide association study (EWAS), testing 865,848 CpG sites for association with PAH in 429 individuals with PAH and 1226 controls. Three loci, at Cathepsin Z (CTSZ, cg04917472), Conserved oligomeric Golgi complex 6 (COG6, cg27396197), and Zinc Finger Protein 678 (ZNF678, cg03144189), reached epigenome-wide significance (p < 10-7) and are hypermethylated in PAH, including in individuals with PAH at 1-year follow-up. Of 16 established PAH genes, only cg10976975 in BMP10 shows hypermethylation in PAH. Hypermethylation at CTSZ is associated with decreased blood cathepsin Z mRNA levels. Knockdown of CTSZ expression in human pulmonary artery endothelial cells increases caspase-3/7 activity (p < 10-4). DNA methylation profiles are altered in PAH, exemplified by the pulmonary endothelial function modifier CTSZ, encoding protease cathepsin Z.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Bone Morphogenetic Proteins , Cathepsin Z , DNA Methylation/genetics , Endothelial Cells , Familial Primary Pulmonary Hypertension
8.
Chest ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508334

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a heterogeneous disease with a poor prognosis. Accurate risk stratification is essential for guiding treatment decisions in pulmonary arterial hypertension (PAH). Although various risk models have been developed for PAH, their comparative prognostic potential requires further exploration. Additionally, the applicability of risk scores in PH groups beyond group 1 remains to be investigated. RESEARCH QUESTION: Are risk scores originally developed for PAH predictive in PH groups 1 through 4? STUDY DESIGN AND METHODS: We conducted a comprehensive analysis of outcomes among patients with incident PH enrolled in the multicenter worldwide Pulmonary Vascular Research Institute GoDeep meta-registry. Analyses were performed across PH groups 1 through 4 and further subgroups to evaluate the predictive value of PAH risk scores, including Registry to Evaluate Early and Long-Term PAH Disease Mangement (REVEAL) Lite 2, REVEAL 2.0, ESC/ERS 2022, Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) 3-strata, and COMPERA 4-strata. RESULTS: Eight thousand five hundred sixty-five patients were included in the study, of whom 3,537 patients were assigned to group 1 PH, whereas 1,807 patients, 1,635 patients, and 1,586 patients were assigned to group 2 PH, group 3 PH, and group 4 PH, respectively. Pulmonary hemodynamics were impaired with median mean pulmonary arterial pressure of 42 mm Hg (interquartile range, 33-52 mm Hg) and pulmonary vascular resistance of 7 Wood units (WU) (interquartile range, 4-11 WU). All risk scores were prognostic in the entire PH population and in each of the PH groups 1 through 4. The REVEAL scores, when used as continuous prediction models, demonstrated the highest statistical prognostic power and granularity; the COMPERA 4-strata risk score provided subdifferentiation of the intermediate-risk group. Similar results were obtained when separately analyzing various subgroups (PH subgroups 1.1, 1.4.1, and 1.4.4; PH subgroups 3.1 and 3.2; group 2 with isolated postcapillary PH vs combined precapillary and postcapillary PH; patients of all groups with concomitant cardiac comorbidities; and severe [> 5 WU] vs nonsevere PH). INTERPRETATION: This comprehensive study with real-world data from 15 PH centers showed that PAH-designed risk scores possess predictive power in a large PH cohort, whether considered as common to the group or calculated separately for each PH group (1-4) and various subgroups. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT05329714; URL: www. CLINICALTRIALS: gov.

9.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38198571

ABSTRACT

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , RNA, Long Noncoding , Humans , Rats , Animals , Mice , Alleles , Hypertension, Pulmonary/genetics , Histones , RNA, Long Noncoding/genetics , Rodentia , Lysine , Familial Primary Pulmonary Hypertension , Hypoxia/genetics , Methyltransferases , Basic Helix-Loop-Helix Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL