Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067887

ABSTRACT

Infrared radiation thermometers (IRTs) overcome many of the limitations of thermocouples, particularly responsiveness and calibration drift. The main challenge with radiation thermometry is the fast and reliable measurement of temperatures close to room temperature. A new IRT which is sensitive to wavelengths between 3 µm and 11 µm was developed and tested in a laboratory setting. It is based on an uncooled indium arsenide antimony (InAsSb) photodiode, a transimpedance amplifier, and a silver halogenide fibre optic cable transmissive in the mid- to long-wave infrared region. The prototype IRT was capable of measuring temperatures between 35 °C and 100 °C at an integration time of 5 ms and a temperature range between 40 °C and 100 °C at an integration time of 1 ms, with a root mean square (RMS) noise level of less than 0.5 °C. The thermometer was calibrated against Planck's law using a five-point calibration, leading to a measurement uncertainty within ±1.5 °C over the aforementioned temperature range. The thermometer was tested against a thermocouple during drilling operations of polyether ether ketone (PEEK) plastic to measure the temperature of the drill bit during the material removal process. Future versions of the thermometer are intended to be used as a thermocouple replacement in high-speed, near-ambient temperature measurement applications, such as electric motor condition monitoring; battery protection; and machining of polymers and composite materials, such as carbon-fibre-reinforced plastic (CFRP).

2.
Sensors (Basel) ; 22(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35808192

ABSTRACT

During the machining process, substantial thermal loads are generated due to tribological factors and plastic deformation. The increase in temperature during the cutting process can lead to accelerated tool wear, reducing the tool's lifespan; the degradation of machining accuracy in the form of dimensional inaccuracies; and thermally induced defects affecting the metallurgical properties of the machined component. These effects can lead to a significant increase in operational costs and waste which deviate from the sustainability goals of Industry 4.0. Temperature is an important machining response; however, it is one of the most difficult factors to monitor, especially in high-speed machining applications such as drilling and milling, because of the high rotational speeds of the cutting tool and the aggressive machining environments. In this article, thermocouple and infrared radiation temperature measurement methods used by researchers to monitor temperature during turning, drilling and milling operations are reviewed. The major merits and limitations of each temperature measurement methodology are discussed and evaluated. Thermocouples offer a relatively inexpensive solution; however, they are prone to calibration drifts and their response times are insufficient to capture rapid temperature changes in high-speed operations. Fibre optic infrared thermometers have very fast response times; however, they can be relatively expensive and require a more robust implementation. It was found that no one temperature measurement methodology is ideal for all machining operations. The most suitable temperature measurement method can be selected by individual researchers based upon their experimental requirements using critical criteria, which include the expected temperature range, the sensor sensitivity to noise, responsiveness and cost.

3.
Sensors (Basel) ; 22(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015902

ABSTRACT

The understanding of blast loads is critical for the development of infrastructure that protects against explosions. However, the lack of high-quality experimental work on the characterisation of such loads prevents a better understanding of many scenarios. Blast loads are typically characterised by use of some form of pressure gauge, from which the temperature can be inferred from a pressure measurement. However, such an approach to temperature measurement is limited; it assumes ideal gas laws apply throughout, which may not be the case for high temperature and pressure scenarios. In contrast, infrared radiation thermometers (IRTs) perform a measurement of temperature based upon the emitted radiance from the target object. The IRTs can measure fast changes in transient temperature, making them seemingly ideal for the measurement of a fireball's temperature. In this work, we present the use of a high-speed IRT for the measurement of early-stage explosive development and fireball expansion within a confined blast, with the temperature of the explosive fireball measured from its emitted radiance. The temperature measured by the IRT was corroborated against the temperature inferred from a pressure gauge measurement; both instruments measured the same temperature from the quasi-static pressure (QSP) point onwards. Before the QSP point, it is deduced that the IRT measures the average temperature of the fireball over a wide field-of-view (FOV), as opposed to that inferred from the singular shocks detected by the pressure gauge. Therefore, use of an IRT, in tandem with a pressure gauge, provides a potential invaluable measurement technique for the characterisation the early stages of a fireball as it develops and expands.

4.
Sensors (Basel) ; 22(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746433

ABSTRACT

High-resolution hyperspectral imaging is becoming indispensable, enabling the precise detection of spectral variations across complex, spatially intricate targets. However, despite these significant benefits, currently available high-resolution set-ups are typically prohibitively expensive, significantly limiting their user base and accessibility. These limitations can have wider implications, limiting data collection opportunities, and therefore our knowledge, across a wide range of environments. In this article we introduce a low-cost alternative to the currently available instrumentation. This instrument provides hyperspectral datasets capable of resolving spectral variations in mm-scale targets, that cannot typically be resolved with many existing low-cost hyperspectral imaging alternatives. Instrument metrology is provided, and its efficacy is demonstrated within a mineralogy-based environmental monitoring application highlighting it as a valuable addition to the field of low-cost hyperspectral imaging.


Subject(s)
Environmental Monitoring , Hyperspectral Imaging , Environmental Monitoring/methods
5.
Sensors (Basel) ; 21(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577358

ABSTRACT

The measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement uncertainty. The system is capable of measuring over an unprecedently wide temperature range; however, this comes at the cost of a reduced temperature resolution and increased uncertainty compared to a conventional CMOS camera operating in photodetective mode. Despite this, the photovoltaic mode thermal camera has an acceptable level of uncertainty for most thermal imaging applications with an NETD of 4-12 °C and a combined measurement uncertainty of approximately 1% K if a low pixel clock is used. We discuss the various sources of uncertainty and how they might be minimised to further improve the performance of the thermal camera. The thermal camera is a good choice for imaging low frame rate applications that have a wide inter-scene temperature range.

6.
Sensors (Basel) ; 21(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300598

ABSTRACT

This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this work.


Subject(s)
Lasers , Thermography , Powders
7.
Soft Matter ; 16(34): 7970-7981, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32766663

ABSTRACT

Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS-hydrocinnamic acid and PbS-naphthoic acid ligated QD aggregate features. In contrast, for PbS-benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials.

8.
Sensors (Basel) ; 20(11)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32527066

ABSTRACT

The recent surge in the development of low-cost, miniaturised technologies provides a significant opportunity to develop miniaturised hyperspectral imagers at a fraction of the cost of currently available commercial set-ups. This article introduces a low-cost laboratory-based hyperspectral imager developed using commercially available components. The imager is capable of quantitative and qualitative hyperspectral measurements, and it was tested in a variety of laboratory-based environmental applications where it demonstrated its ability to collect data that correlates well with existing datasets. In its current format, the imager is an accurate laboratory measurement tool, with significant potential for ongoing future developments. It represents an initial development in accessible hyperspectral technologies, providing a robust basis for future improvements.

9.
Sensors (Basel) ; 19(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336796

ABSTRACT

The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets.

10.
Opt Express ; 26(19): 24904-24916, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469599

ABSTRACT

Conventional thermal imaging cameras, based on focal-plane array (FPA) sensors, exhibit inherent problems: such as stray radiation, cross-talk and the calibration uncertainty of ensuring each pixel behaves as if it were an identical temperature sensor. Radiation thermometers can largely overcome these issues, comprising of only a single detector element that can be optimised and calibrated. Although the latter approach can provide excellent accuracy for single-point temperature measurement, it does not provide a temperature image of the target object. In this work, we present a micromechanical systems (MEMS) mirror and silicon (Si) avalanche photodiode (APD) based single-pixel camera, capable of producing quantitative thermal images at an operating wavelength of 1 µm. This work utilises a custom designed f-theta wide-angle lens and MEMS mirror, to scan +/- 30° in both x- and y-dimensions, without signal loss due to vignetting at any point in the field of view (FOV). Our single-pixel camera is shown to perform well, with 3 °C size-of-source effect (SSE) related temperature error and can measure below 700 °C whilst achieving ± 0.5 °C noise related measurement uncertainty. Our measurements were calibrated and traceable to the International Temperature Scale of 1990 (ITS-90). The combination of low SSE and absence of vignetting enables quantitative temperature measurements over a spatial field with measurement uncertainty at levels lower than would be possible with FPA based thermal imaging cameras.

11.
Appl Opt ; 57(36): 10449-10457, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30645388

ABSTRACT

We present a wide field of view (FOV) infrared scanning system, designed for single-pixel near-infrared thermal imaging. The scanning system consisted of a two-axis micro-electromechanical system (MEMS) mirror that was incorporated within the lens. The optical system consisted of two groups of lenses and a silicon avalanche photodiode. The system was designed for both the production of thermal images and also to utilize the techniques of radiation thermometry to measure the absolute temperature of targets from 500°C to 1100°C. Our system has the potential for real-time image acquisition, with improved data acquisition electronics. The FOV of our scanning system was ±30° when fully utilizing the MEMS mirror's scanning angle of ±5°. The pixel FOV (calculated from the distance to target size ratio) was 100:1. The image quality was analyzed, including the modulation transfer function, spot diagrams, ray fan plots, lateral chromatic aberrations, distortion, relative illumination, and size-of-source effect. The instrument was fabricated in our laboratory, and one of the thermal images, which was taken with the new lens, is presented as an example of the instrument optical performance.

12.
Sensors (Basel) ; 18(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241398

ABSTRACT

A new infrared thermometer, sensitive to wavelengths between 3 µm and 3.5 µm, has been developed. It is based on an Indium Arsenide Antimony (InAsSb) photodiode, a transimpedance amplifier, and a sapphire fiber optic cable. The thermometer used an uncooled photodiode sensor and received infrared radiation that did not undergo any form of optical chopping, thereby, minimizing the physical size of the device and affording its attachment to a milling machine tool holder. The thermometer is intended for applications requiring that the electronics are located remotely from high-temperature conditions incurred during machining but also affording the potential for use in other harsh conditions. Other example applications include: processes involving chemical reactions and abrasion or fluids that would otherwise present problems for invasive contact sensors to achieve reliable and accurate measurements. The prototype thermometer was capable of measuring temperatures between 200 °C and 1000 °C with sapphire fiber optic cable coupling to high temperature conditions. Future versions of the device will afford temperature measurements on a milling machine cutting tool and could substitute for the standard method of embedding thermocouple wires into the cutting tool inserts. Similarly, other objects within harsh conditions could be measured using these techniques and accelerate developments of the thermometer to suit particular applications.

13.
Sensors (Basel) ; 18(1)2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29342899

ABSTRACT

Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a 'lab in a phone' capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

14.
Opt Lett ; 42(21): 4323-4326, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088154

ABSTRACT

We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60 nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO2), ≈310 nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications.

15.
Sensors (Basel) ; 16(10)2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27782054

ABSTRACT

Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.

16.
Adv Sci (Weinh) ; 11(10): e2306561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145339

ABSTRACT

Palladium films hold signicance due to their remarkable affinity for hydrogen diffusion, rendering them valauble for the seperation and purification of hydrogen in membrane reactors. However, palladium is expensive, and its films can become brittle after only a few cycles of hydrogen separation. Alloying with silver has been shown to overcome the problem of palladium embrittlement. Palladium-silver films have been produced via several methods but all have drawbacks, such as difficulties controlling the alloy composition. This study explores two promising jet printing methods: Inkjet and Aerosoljet. Both methods offer potential advantages such as direct patterning, which reduces waste, enables thin film production, and allows for the control of alloy composition. For the first time, palladium-silver alloys have been produced via inkjet printing using a palladium-silver metal organic decomposition (MOD) ink, which alloys at a temperature of 300 °C with nitrogen. Similarly, this study also demonstrates a pioneering approach for Aerosol Jet printing, showing the potential of a novel room-temperature method, for the deposition of palladium-silver MOD inks. This low temperature approach is considered an important development as palladium-silver MOD inks are originally designed for deposition on heated substrates.

17.
Sci Rep ; 12(1): 18496, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36323762

ABSTRACT

We demonstrate a new technique for producing Polymer Dispersed Liquid Crystal (PDLC) devices utilising aerosol jet printing (AJP). PDLCs require two substrates to act as scaffold for the Indium Tin Oxide electrodes, which restricts the device geometries. Our approach precludes the requirement for the second substrate by printing the electrode directly onto the surface of the PDLC, which is also printed. The process has the potential to be precursory to the implementation of non-contact printing techniques for a variety of liquid crystal-based devices on non-planar substrates. We report the demonstration of direct deposition of PDLC films onto non-planar optical surfaces, including a functional device printed over the 90° edge of a prism. Scanning Electron Microscopy is used to inspect surface features of the polymer electrodes and the liquid crystal domains in the host polymer. The minimum relaxation time of the PDLC was measured at 1.3 ms with an 800 Hz, 90 V, peak-to-peak (Vpp) applied AC field. Cross-polarised transmission is reduced by up to a factor of 3.9. A transparent/scattering contrast ratio of 1.4 is reported between 0 and 140 V at 100 Hz.

18.
J Imaging ; 7(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34460772

ABSTRACT

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone's abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.

19.
Article in English | MEDLINE | ID: mdl-32971989

ABSTRACT

The temperature of the indoor environment is important for health and wellbeing, especially at the extremes of age. The study aim was to understand the relationship between self-reported thermal sensation and extremity skin temperature in care home residents with and without dementia. The Abbreviated Mental Test (AMT) was used to discriminate residents to two categories, those with, and those without, dementia. After residents settled and further explanation of the study given (approximately 15 min), measurements included: tympanic membrane temperature, thermal sensation rating and infrared thermal mapping of non-dominant hand and forearm. Sixty-nine afebrile adults (60-101 years of age) were studied in groups of two to five, in mean ambient temperatures of 21.4-26.6 °C (median 23.6 °C). Significant differences were observed between groups; thermal sensation rating (p = 0.02), tympanic temperature (p = 0.01), fingertip skin temperature (p = 0.01) and temperature gradients; fingertip-wrist p = 0.001 and fingertip-distal forearm, p = 0.001. Residents with dementia were in significantly lower air temperatures (p = 0.001). Although equal numbers of residents per group rated the environment as 'neutral' (comfortable), resident ratings for 'cool/cold' were more frequent amongst those with dementia compared with no dementia. In parallel, extremity (hand) thermograms revealed visual temperature demarcation, variously across fingertip, wrist, and forearm commensurate with peripheral vasoconstriction. Infrared thermography provided a quantitative and qualitative method to measure and observe hand skin temperature across multiple regions of interest alongside thermal sensation self-report. As an imaging modality, infrared thermography has potential as an additional assessment technology with clinical utility to identify vulnerable residents who may be unable to communicate verbally, or reliably, their satisfaction with indoor environmental conditions.


Subject(s)
Dementia , Thermography , Thermosensing , Aged , Aged, 80 and over , Dementia/physiopathology , Female , Humans , Male , Middle Aged , Skin Temperature , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL