Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Synth Biol ; 13(4): 1142-1151, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38568420

ABSTRACT

The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.


Subject(s)
Microbial Consortia , Microbiota , Gene Transfer, Horizontal , Metabolic Engineering , Genomics
2.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873187

ABSTRACT

The metabolic engineering of microbes has broad applications, including in biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multi-step pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is division of labor (DOL), in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted inter-strain population dynamics. Through modeling, we show that dynamic division of labor (DDOL) mediated by horizontal gene transfer (HGT) can overcome these limitations and enable the robust maintenance of burdensome, multi-step pathways. We also use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.

SELECTION OF CITATIONS
SEARCH DETAIL