Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell ; 149(1): 63-74, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22464323

ABSTRACT

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Subject(s)
Erythropoiesis , Erythropoietin/metabolism , Osteoblasts/metabolism , Signal Transduction , Anemia/prevention & control , Animals , Erythroid Precursor Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/metabolism , Mice , Sp7 Transcription Factor , Transcription Factors/genetics , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
2.
Genes Dev ; 29(8): 817-31, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25846796

ABSTRACT

The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1-3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic-osteogenic coupling. We also demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly, we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic-osteogenic coupling.


Subject(s)
Bone and Bones/enzymology , Homeostasis , Osteoprotegerin/metabolism , Oxygen/metabolism , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , 3T3 Cells , Animals , Bone Resorption/genetics , Bone and Bones/cytology , Cell Communication , Cell Hypoxia/physiology , Cells, Cultured , Enzyme Activation , Female , Gene Silencing , Hypoxia-Inducible Factor 1/metabolism , Mice , Osteoblasts/metabolism , Osteoclasts/metabolism , Signal Transduction/genetics , Stem Cells/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL