Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Cell ; 153(3): 666-77, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622249

ABSTRACT

The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis.


Subject(s)
Chromosome Aberrations , Gene Expression Regulation, Neoplastic , Genome, Human , Prostatic Neoplasms/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cohort Studies , Genome-Wide Association Study , Humans , Male , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Prostatic Neoplasms/pathology
2.
Cell ; 150(2): 251-63, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817889

ABSTRACT

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Subject(s)
Genome-Wide Association Study , Melanoma/genetics , Mutagenesis , Ultraviolet Rays , Amino Acid Sequence , Cells, Cultured , Exome , Humans , Melanocytes/metabolism , Models, Molecular , Molecular Sequence Data , Proto-Oncogene Proteins B-raf/genetics , Sequence Alignment , rac1 GTP-Binding Protein/genetics
3.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980975

ABSTRACT

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genes, Neoplasm , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Exome , Female , Genome-Wide Association Study , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Mutation Rate
5.
Nature ; 485(7399): 502-6, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22622578

ABSTRACT

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Subject(s)
Genome, Human/genetics , Guanine Nucleotide Exchange Factors/genetics , Melanoma/genetics , Mutation/genetics , Sunlight/adverse effects , Chromosome Breakpoints/radiation effects , DNA Damage , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , Humans , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/pathology , Mutagenesis/radiation effects , Mutation/radiation effects , Oncogenes/genetics , Ultraviolet Rays/adverse effects
6.
Nature ; 483(7391): 603-7, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22460905

ABSTRACT

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.


Subject(s)
Databases, Factual , Drug Screening Assays, Antitumor/methods , Encyclopedias as Topic , Models, Biological , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Lineage , Chromosomes, Human/genetics , Clinical Trials as Topic/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, ras/genetics , Genome, Human/genetics , Genomics , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Pharmacogenetics , Plasma Cells/cytology , Plasma Cells/drug effects , Plasma Cells/metabolism , Precision Medicine/methods , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Sequence Analysis, DNA , Topoisomerase Inhibitors/pharmacology
7.
Nature ; 470(7333): 214-20, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21307934

ABSTRACT

Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, 'copy-neutral') rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.


Subject(s)
Genome, Human/genetics , Prostatic Neoplasms/genetics , Adaptor Proteins, Signal Transducing , Carrier Proteins/genetics , Case-Control Studies , Cell Adhesion Molecules/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosome Aberrations , Chromosome Breakpoints , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Guanylate Kinases , Humans , Male , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Recombination, Genetic/genetics , Signal Transduction/genetics , Transcription, Genetic
8.
Nature ; 471(7339): 467-72, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21430775

ABSTRACT

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Subject(s)
Genome, Human/genetics , Multiple Myeloma/genetics , Mutation/genetics , Amino Acid Sequence , Blood Coagulation/genetics , CpG Islands/genetics , DNA Mutational Analysis , DNA Repair/genetics , Exons/genetics , Exosome Multienzyme Ribonuclease Complex , Genomics , Histones/metabolism , Homeodomain Proteins/genetics , Homeostasis/genetics , Humans , Methylation , Models, Molecular , Molecular Sequence Data , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/metabolism , NF-kappa B/metabolism , Oncogenes/genetics , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Conformation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Processing, Post-Transcriptional/genetics , Ribonucleases/chemistry , Ribonucleases/genetics , Signal Transduction/genetics , Transcription, Genetic/genetics
9.
Proc Natl Acad Sci U S A ; 111(30): 10911-6, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024206

ABSTRACT

High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library. Here, we confirm earlier results showing that this inference is not always valid and suggest instead using biological measurement diversity derived from multiplexed profiling in the construction of libraries with diverse assay performance patterns for cell-based screens. Rather than using results from tens or hundreds of completed assays, which is resource intensive and not easily extensible, we use high-dimensional image-based cell morphology and gene expression profiles. We piloted this approach using over 30,000 compounds. We show that small-molecule profiling can be used to select compound sets with high rates of activity and diverse biological performance.


Subject(s)
Drug Evaluation, Preclinical/methods , Gene Expression Profiling , Gene Expression Regulation/drug effects , Cell Line, Tumor , Humans
10.
Nature ; 463(7283): 899-905, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20164920

ABSTRACT

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Subject(s)
DNA Copy Number Variations/genetics , Gene Dosage/genetics , Neoplasms/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Gene Amplification/genetics , Genomics , Humans , Multigene Family/genetics , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasms/classification , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , bcl-X Protein/genetics
11.
Nat Genet ; 39(3): 347-51, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17293865

ABSTRACT

Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.


Subject(s)
DNA Mutational Analysis/methods , Mutation , Neoplasms/genetics , Oncogenes , Gene Expression Profiling , Genome, Human , Genotype , Humans
12.
Hepatology ; 59(4): 1577-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24677197

ABSTRACT

UNLABELLED: Hepatocellular carcinoma (HCC) is the most rapidly increasing cause of cancer-related mortality in the United States. Because of the lack of viable treatment options for HCC, prevention in high-risk patients has been proposed as an alternative strategy. The main risk factor for HCC is cirrhosis and several lines of evidence implicate epidermal growth factor (EGF) in the progression of cirrhosis and development of HCC. We therefore examined the effects of the EGF receptor (EGFR) inhibitor erlotinib on liver fibrogenesis and hepatocellular transformation in three different animal models of progressive cirrhosis: a rat model induced by repeated, low-dose injections of diethylnitrosamine (DEN), a mouse model induced by carbon tetrachloride (CCl4 ), and a rat model induced by bile duct ligation (BDL). Erlotinib reduced EGFR phosphorylation in hepatic stellate cells (HSC) and reduced the total number of activated HSC. Erlotinib also decreased hepatocyte proliferation and liver injury. Consistent with all these findings, pharmacological inhibition of EGFR signaling effectively prevented the progression of cirrhosis and regressed fibrosis in some animals. Moreover, by alleviating the underlying liver disease, erlotinib blocked the development of HCC and its therapeutic efficacy could be monitored with a previously reported gene expression signature predictive of HCC risk in human cirrhosis patients. CONCLUSION: These data suggest that EGFR inhibition using Food and Drug Administration-approved inhibitors provides a promising therapeutic approach for reduction of fibrogenesis and prevention of HCC in high-risk cirrhosis patients who can be identified and monitored by gene expression signatures.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Disease Progression , ErbB Receptors/antagonists & inhibitors , Liver Cirrhosis/prevention & control , Liver Neoplasms/prevention & control , Quinazolines/therapeutic use , Animals , Bile Ducts/physiopathology , Carbon Tetrachloride/adverse effects , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Cells, Cultured , Diethylnitrosamine/adverse effects , Disease Models, Animal , ErbB Receptors/drug effects , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Ligation/adverse effects , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred Strains , Phosphorylation/drug effects , Prognosis , Quinazolines/pharmacology , Rats , Rats, Wistar , Transcriptome
13.
Proc Natl Acad Sci U S A ; 109(36): 14476-81, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22908275

ABSTRACT

We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.


Subject(s)
Adenocarcinoma/enzymology , Lung Neoplasms/enzymology , Mutation/genetics , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Alleles , Animals , Cell Movement/physiology , Cloning, Molecular , DNA Primers/genetics , Dimerization , Immunoblotting , Lung Neoplasms/genetics , Mice , NIH 3T3 Cells , Phosphorylation , Protein Structure, Tertiary/genetics , Retroviridae , Tandem Mass Spectrometry
14.
PLoS Genet ; 8(8): e1002793, 2012.
Article in English | MEDLINE | ID: mdl-22876189

ABSTRACT

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the "Metabochip," a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.


Subject(s)
Anthropometry/instrumentation , Metabolomics/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Alleles , Anthropometry/methods , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Frequency , Genome, Human , Genome-Wide Association Study , Genotype , Genotyping Techniques , Humans , Metabolomics/methods , Oligonucleotide Array Sequence Analysis/methods , Phenotype
15.
Clin Cancer Res ; 30(7): 1409-1421, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37939112

ABSTRACT

PURPOSE: Our goal was to demonstrate that lymphatic drainage fluid (lymph) has improved sensitivity in quantifying postoperative minimal residual disease (MRD) in locally advanced human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) compared with plasma, and leverage this novel biofluid for patient risk stratification. EXPERIMENTAL DESIGN: We prospectively collected lymph samples from neck drains of 106 patients with HPV (+) OPSCC, along with 67 matched plasma samples, 24 hours after surgery. PCR and next-generation sequencing were used to quantify cancer-associated cell-free HPV (cf-HPV) and tumor-informed variants in lymph and plasma. Next, lymph cf-HPV and variants were compared with TNM stage, extranodal extension (ENE), and composite definitions of high-risk pathology. We then created a machine learning model, informed by lymph MRD and clinicopathologic features, to compare with progression-free survival (PFS). RESULTS: Postoperative lymph was enriched with cf-HPV compared with plasma (P < 0.0001) and correlated with pN2 stage (P = 0.003), ENE (P < 0.0001), and trial-defined pathologic risk criteria (mean AUC = 0.78). In addition, the lymph mutation number and variant allele frequency were higher in pN2 ENE (+) necks than in pN1 ENE (+) (P = 0.03, P = 0.02) or pN0-N1 ENE (-) (P = 0.04, P = 0.03, respectively). The lymph MRD-informed risk model demonstrated inferior PFS in high-risk patients (AUC = 0.96, P < 0.0001). CONCLUSIONS: Variant and cf-HPV quantification, performed in 24-hour postoperative lymph samples, reflects single- and multifeature high-risk pathologic criteria. Incorporating lymphatic MRD and clinicopathologic feature analysis can stratify PFS early after surgery in patients with HPV (+) head and neck cancer. See related commentary by Shannon and Iyer, p. 1223.


Subject(s)
Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Papillomavirus Infections/surgery , Neoplasm, Residual/pathology , Prognosis , Neoplasm Staging , Oropharyngeal Neoplasms/diagnosis , Oropharyngeal Neoplasms/surgery , Oropharyngeal Neoplasms/pathology , Head and Neck Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/surgery , Retrospective Studies
16.
Genome Res ; 20(4): 413-27, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20179022

ABSTRACT

Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massively parallel sequencing of cDNA (RNA-seq) together with analyses of high-resolution chromosomal copy number data, we identified 11 novel melanoma gene fusions produced by underlying genomic rearrangements, as well as 12 novel readthrough transcripts. We mapped these chimeric transcripts to base-pair resolution and traced them to their genomic origins using matched chromosomal copy number information. We also used these data to discover and validate base-pair mutations that accumulated in these melanomas, revealing a surprisingly high rate of somatic mutation and lending support to the notion that point mutations constitute the major driver of melanoma progression. Taken together, these results may indicate new avenues for target discovery in melanoma, while also providing a template for large-scale transcriptome studies across many tumor types.


Subject(s)
Gene Expression Profiling , Melanoma/genetics , Skin Neoplasms/genetics , Base Sequence , DNA Mutational Analysis , Gene Amplification , Gene Dosage , Gene Expression Regulation, Neoplastic , Gene Fusion , Genomics/methods , Humans , K562 Cells , Matched-Pair Analysis , Melanoma/metabolism , Melanoma/pathology , Polymorphism, Genetic , Protein Isoforms/genetics , Sequence Analysis, DNA , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Systems Integration , Tumor Cells, Cultured
17.
Bioinformatics ; 28(11): 1530-2, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22539670

ABSTRACT

UNLABELLED: RNA-seq, the application of next-generation sequencing to RNA, provides transcriptome-wide characterization of cellular activity. Assessment of sequencing performance and library quality is critical to the interpretation of RNA-seq data, yet few tools exist to address this issue. We introduce RNA-SeQC, a program which provides key measures of data quality. These metrics include yield, alignment and duplication rates; GC bias, rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 3'/5' bias and count of detectable transcripts, among others. The software provides multi-sample evaluation of library construction protocols, input materials and other experimental parameters. The modularity of the software enables pipeline integration and the routine monitoring of key measures of data quality such as the number of alignable reads, duplication rates and rRNA contamination. RNA-SeQC allows investigators to make informed decisions about sample inclusion in downstream analysis. In summary, RNA-SeQC provides quality control measures critical to experiment design, process optimization and downstream computational analysis. AVAILABILITY AND IMPLEMENTATION: See www.genepattern.org to run online, or www.broadinstitute.org/rna-seqc/ for a command line tool.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Software , Gene Expression Profiling , Gene Library , Internet , Quality Control , RNA/genetics , RNA, Ribosomal/genetics
18.
Proc Natl Acad Sci U S A ; 105(25): 8713-7, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18552176

ABSTRACT

Oncogenic activation of tyrosine kinases is a common mechanism of carcinogenesis and, given the druggable nature of these enzymes, an attractive target for anticancer therapy. Here, we show that somatic mutations of the fibroblast growth factor receptor 2 (FGFR2) tyrosine kinase gene, FGFR2, are present in 12% of endometrial carcinomas, with additional instances found in lung squamous cell carcinoma and cervical carcinoma. These FGFR2 mutations, many of which are identical to mutations associated with congenital craniofacial developmental disorders, are constitutively activated and oncogenic when ectopically expressed in NIH 3T3 cells. Inhibition of FGFR2 kinase activity in endometrial carcinoma cell lines bearing such FGFR2 mutations inhibits transformation and survival, implicating FGFR2 as a novel therapeutic target in endometrial carcinoma.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Mutation , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Carcinoma/drug therapy , Carcinoma/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Female , Mice , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Transfection
19.
Nat Commun ; 12(1): 3199, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045463

ABSTRACT

In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer's mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer.


Subject(s)
Autopsy/methods , Circulating Tumor DNA/genetics , DNA Mutational Analysis/methods , Neoplasms/diagnosis , Tumor Microenvironment/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Chemoradiotherapy, Adjuvant , Cohort Studies , DNA Copy Number Variations , Female , Genetic Heterogeneity , Humans , Male , Neoadjuvant Therapy , Neoplasms/blood , Neoplasms/pathology , Neoplasms/therapy , Point Mutation , RNA-Seq , Reference Values , Sensitivity and Specificity , Spatial Analysis , Time Factors , Exome Sequencing
20.
Sci Transl Med ; 13(616): eabe8939, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34669440

ABSTRACT

Noninvasive detection of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease, promises to improve patient screening, accelerate drug trials, and reduce health care costs. On the basis of protease dysregulation of the biological pathways of fibrotic NASH, we developed the Glympse Bio Test System (GBTS) for multiplexed quantification of liver protease activity. GBTS-NASH comprises a mixture of 19 mass-barcoded PEGylated peptides that is administered intravenously and senses liver protease activity by releasing mass-barcoded reporters into urine for analysis by mass spectrometry. To identify a protease signature of NASH, transcriptomic analysis of 355 human liver biopsies identified a 13-protease panel that discriminated clinically relevant NASH ≥F2 fibrosis from F0-F1 with high classification accuracy across two independent patient datasets. We screened 159 candidate substrates to identify a panel of 19 peptides that exhibited high activity for our 13-protease panel. In the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) mouse model, binary classifiers trained on urine samples discriminated fibrotic NASH from simple steatosis and healthy controls across a range of nondisease conditions and indicated disease regression upon diet change [area under receiver operating characteristics (AUROCs) > 0.97]. Using a hepatoprotective triple combination treatment (FXR agonist, ACC and ASK1 inhibitors) in a rat model of NASH, urinary classification distinguished F0-F1 from ≥F2 animals and indicated therapeutic response as early as 1 week on treatment (AUROCs >0.91). Our results support GBTS-NASH to diagnose fibrotic NASH via an infusion of peptides, monitor changes in disease severity, and indicate early treatment response.


Subject(s)
Non-alcoholic Fatty Liver Disease , Fibrosis , Humans , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL