Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
EMBO J ; 34(4): 466-74, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25599993

ABSTRACT

Antinuclear antibodies are a hallmark feature of generalized autoimmune diseases, including systemic lupus erythematosus and systemic sclerosis. However, the processes underlying the loss of tolerance against nuclear self-constituents remain largely unresolved. Using mice deficient in lymphotoxin and Hox11, we report that approximately 25% of mice lacking secondary lymphoid organs spontaneously develop specific antinuclear antibodies. Interestingly, we find this phenotype is not caused by a defect in central tolerance. Rather, cell-specific deletion and in vivo lymphotoxin blockade link these systemic autoimmune responses to the formation of gut-associated lymphoid tissue in the neonatal period of life. We further demonstrate antinuclear antibody production is influenced by the presence of commensal gut flora, in particular increased colonization with segmented filamentous bacteria, and IL-17 receptor signaling. Together, these data indicate that neonatal colonization of gut microbiota influences generalized autoimmunity in adult life.


Subject(s)
Autoimmunity/immunology , Microbiota/immunology , Animals , Antibodies, Antinuclear/genetics , Antibodies, Antinuclear/immunology , Autoimmunity/genetics , Female , Flow Cytometry , Lymphotoxin-alpha/genetics , Lymphotoxin-alpha/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
2.
Ann Rheum Dis ; 76(3): 585-592, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27551052

ABSTRACT

OBJECTIVES: A20 is an important endogenous regulator of inflammation. Single nucleotide polymorphisms in A20 have been associated with various immune-mediated inflammatory diseases, and cell-specific deletion of A20 results in diverse inflammatory phenotypes. Our goal was to delineate the underlying mechanisms of joint inflammation in myeloid-specific A20-deficient mice (A20myelKO mice). METHODS: Inflammation in A20myelKO mice was assessed in a time-dependent manner. Western blot analysis and quantitative PCR analysis were performed on bone marrow-derived macrophages from A20myelKO and littermate control mice to study the effect of A20 on STAT1/STAT3 expression and STAT1/STAT3-dependent gene transcription in myeloid cells. The in vivo role of Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling in the development of enthesitis in A20myelKO mice was assessed following administration of a JAK inhibitor versus placebo control. RESULTS: Enthesitis was found to be an early inflammatory lesion in A20myelKO mice. A20 negatively modulated STAT1-dependent, but generally not STAT3-dependent gene transcription in myeloid cells by suppressing STAT1 but not STAT3 expression, both in unstimulated conditions and after interferon-γ or interleukin-6 stimulation. The increase in STAT1 gene transcription in the absence of A20 was shown to be JAK-STAT-dependent. Moreover, JAK inhibition in vivo resulted in significant reduction of enthesitis, both clinically and histopathologically. CONCLUSIONS: Our data reveal an important and novel interplay between myeloid cells and tissue resident cells at entheseal sites that is regulated by A20. In the absence of A20, STAT1 but not STAT3 expression is enhanced leading to STAT1-dependent inflammation. Therefore, A20 acts as a novel endogenous regulator of STAT1 that prevents onset of enthesitis.


Subject(s)
Enthesopathy/genetics , Enthesopathy/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Cells, Cultured , Enthesopathy/etiology , Enthesopathy/pathology , Inflammation/complications , Inflammation/genetics , Inflammation/metabolism , Interferon-gamma/pharmacology , Interleukin-6/pharmacology , Janus Kinases/metabolism , Macrophages , Mice , Mice, Knockout , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
3.
J Hepatol ; 60(1): 175-82, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23973929

ABSTRACT

BACKGROUND & AIMS: Immunometabolism is an emerging field of clinical investigation due to the obesity epidemic worldwide. A reciprocal involvement of immune mediators in the body energy metabolism has been recognized for years, but is only partially understood. We hypothesized that the adipokine leptin could provide an important modulator of iNKT cells. METHODS: The expression of leptin receptor (LR) on resting and activated iNKT cells was measured by flow cytometry. FACS-sorted hepatic iNKT cells were stimulated with anti-CD3/CD28Ab coated beads in the absence or presence of a neutralizing anti-leptin Ab. Furthermore, we evaluated the outcome of LR blocking nanobody treatment in ConA induced hepatitis and towards metabolic parameters in WT and iNKT cell deficient mice. RESULTS: The LR is expressed on iNKT cells and leptin suppresses iNKT cell proliferation and cytokine production in vitro. LR deficient iNKT cells are hyper-responsive further enforcing the role of leptin as an important inhibitor of iNKT cell function. Consistently, in vivo blockade of LR signaling exacerbated ConA hepatitis in wild-type but not in iNKT cell deficient mice, through both Janus kinase (JAK)2 and mitogen-activated protein kinase (MAPK) dependent mechanisms. Moreover, LR inhibition altered fat pad features and was accompanied by insulin resistance, only in wild-type mice. Curiously, this interaction was strictly dependent on MAPK mediated LR signaling in iNKT cells and uncoupled from the more central effects of leptin. CONCLUSIONS: Our data support a new concept of immune regulation by which leptin protects towards T cell mediated hepatitis via modulation of iNKT cells.


Subject(s)
Adipocytes/physiology , Cell Communication , Hepatitis/etiology , Leptin/physiology , Natural Killer T-Cells/physiology , T-Lymphocytes/immunology , Adipose Tissue/metabolism , Animals , Disease Susceptibility , Lymphocyte Activation , MAP Kinase Signaling System , Mice , Receptors, Antigen, T-Cell/physiology , Receptors, Leptin/physiology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL