Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Diabetologia ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819466

ABSTRACT

AIMS/HYPOTHESIS: Delivery by Caesarean section continues to rise globally and has been associated with the risk of developing type 1 diabetes and the rate of progression from pre-symptomatic stage 1 or 2 type 1 diabetes to symptomatic stage 3 disease. The aim of this study was to examine the association between Caesarean delivery and progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. METHODS: Caesarean section was examined in 8135 children from the TEDDY study who had an increased genetic risk for type 1 diabetes and were followed from birth for the development of islet autoantibodies and type 1 diabetes. RESULTS: The likelihood of delivery by Caesarean section was higher in children born to mothers with type 1 diabetes (adjusted OR 4.61, 95% CI 3.60, 5.90, p<0.0001), in non-singleton births (adjusted OR 4.35, 95% CI 3.21, 5.88, p<0.0001), in premature births (adjusted OR 1.91, 95% CI 1.53, 2.39, p<0.0001), in children born in the USA (adjusted OR 2.71, 95% CI 2.43, 3.02, p<0.0001) and in children born to older mothers (age group >28-33 years: adjusted OR 1.19, 95% CI 1.04, 1.35, p=0.01; age group >33 years: adjusted OR 1.80, 95% CI 1.58, 2.06, p<0.0001). Caesarean section was not associated with an increased risk of developing pre-symptomatic early-stage type 1 diabetes (risk by age 10 years 5.7% [95% CI 4.6%, 6.7%] for Caesarean delivery vs 6.6% [95% CI 6.0%, 7.3%] for vaginal delivery, p=0.07). Delivery by Caesarean section was associated with a modestly increased rate of progression to stage 3 type 1 diabetes in children who had developed multiple islet autoantibody-positive pre-symptomatic early-stage type 1 diabetes (adjusted HR 1.36, 95% CI 1.03, 1.79, p=0.02). No interaction was observed between Caesarean section and non-HLA SNPs conferring susceptibility for type 1 diabetes. CONCLUSIONS/INTERPRETATION: Caesarean section increased the rate of progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. DATA AVAILABILITY: Data from the TEDDY study ( https://doi.org/10.58020/y3jk-x087 ) reported here will be made available for request at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository (NIDDK-CR) Resources for Research (R4R) ( https://repository.niddk.nih.gov/ ).

2.
Diabetologia ; 67(4): 670-678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214711

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to determine whether BMI in early childhood was affected by the COVID-19 pandemic and containment measures, and whether it was associated with the risk for islet autoimmunity. METHODS: Between February 2018 and May 2023, data on BMI and islet autoimmunity were collected from 1050 children enrolled in the Primary Oral Insulin Trial, aged from 4.0 months to 5.5 years of age. The start of the COVID-19 pandemic was defined as 18 March 2020, and a stringency index was used to assess the stringency of containment measures. Islet autoimmunity was defined as either the development of persistent confirmed multiple islet autoantibodies, or the development of one or more islet autoantibodies and type 1 diabetes. Multivariate linear mixed-effect, linear and logistic regression methods were applied to assess the effect of the COVID-19 pandemic and the stringency index on early-childhood BMI measurements (BMI as a time-varying variable, BMI at 9 months of age and overweight risk at 9 months of age), and Cox proportional hazard models were used to assess the effect of BMI measurements on islet autoimmunity risk. RESULTS: The COVID-19 pandemic was associated with increased time-varying BMI (ß = 0.39; 95% CI 0.30, 0.47) and overweight risk at 9 months (ß = 0.44; 95% CI 0.03, 0.84). During the COVID-19 pandemic, a higher stringency index was positively associated with time-varying BMI (ß = 0.02; 95% CI 0.00, 0.04 per 10 units increase), BMI at 9 months (ß = 0.13; 95% CI 0.01, 0.25) and overweight risk at 9 months (ß = 0.23; 95% CI 0.03, 0.43). A higher age-corrected BMI and overweight risk at 9 months were associated with increased risk for developing islet autoimmunity up to 5.5 years of age (HR 1.16; 95% CI 1.01, 1.32 and HR 1.68, 95% CI 1.00, 2.82, respectively). CONCLUSIONS/INTERPRETATION: Early-childhood BMI increased during the COVID-19 pandemic, and was influenced by the level of restrictions during the pandemic. Controlling for the COVID-19 pandemic, elevated BMI during early childhood was associated with increased risk for childhood islet autoimmunity in children with genetic susceptibility to type 1 diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Child, Preschool , Autoimmunity/genetics , Body Mass Index , Pandemics , Overweight/complications , COVID-19/epidemiology , COVID-19/complications , Autoantibodies
3.
Infection ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874748

ABSTRACT

OBJECTIVES: To determine the impact of the COVID-19 pandemic on the incidence rates of infection and islet autoimmunity in children at risk for type 1 diabetes. METHODS: 1050 children aged 4 to 7 months with an elevated genetic risk for type 1 diabetes were recruited from Germany, Poland, Sweden, Belgium and the UK. Reported infection episodes and islet autoantibody development were monitored until age 40 months from February 2018 to February 2023. RESULTS: The overall infection rate was 311 (95% Confidence Interval [CI], 304-318) per 100 person years. Infection rates differed by age, country, family history of type 1 diabetes, and period relative to the pandemic. Total infection rates were 321 per 100 person-years (95% CI 304-338) in the pre-pandemic period (until February 2020), 160 (95% CI 148-173) per 100 person-years in the first pandemic year (March 2020-February 2021; P < 0.001) and 337 (95% CI 315-363) per 100 person-years in subsequent years. Similar trends were observed for respiratory and gastrointestinal infections. Islet autoantibody incidence rates were 1.6 (95% CI 1.0-2.4) per 100 person-years in the pre-pandemic period, 1.2 (95% CI 0.8-1.9) per 100 person-years in the first pandemic year (P = 0.46), and 3.4 (95% CI 2.3-4.8) per 100 person-years in subsequent years (P = 0.005 vs. pre-pandemic year; P < 0.001 vs. first pandemic year). CONCLUSIONS: The COVID-19 pandemic was associated with significantly altered infection patterns. Islet autoantibody incidence rates increased two-fold when infection rates returned to pre-pandemic levels.

4.
Diabetologia ; 66(9): 1633-1642, 2023 09.
Article in English | MEDLINE | ID: mdl-37329450

ABSTRACT

AIMS/HYPOTHESIS: We aimed to determine whether disease severity was reduced at onset of clinical (stage 3) type 1 diabetes in children previously diagnosed with presymptomatic type 1 diabetes in a population-based screening programme for islet autoantibodies. METHODS: Clinical data obtained at diagnosis of stage 3 type 1 diabetes were evaluated in 128 children previously diagnosed with presymptomatic early-stage type 1 diabetes between 2015 and 2022 in the Fr1da study and compared with data from 736 children diagnosed with incident type 1 diabetes between 2009 and 2018 at a similar age in the DiMelli study without prior screening. RESULTS: At the diagnosis of stage 3 type 1 diabetes, children with a prior early-stage diagnosis had lower median HbA1c (51 mmol/mol vs 91 mmol/mol [6.8% vs 10.5%], p<0.001), lower median fasting glucose (5.3 mmol/l vs 7.2 mmol/l, p<0.05) and higher median fasting C-peptide (0.21 nmol/l vs 0.10 nmol/l, p<0.001) compared with children without previous early-stage diagnosis. Fewer participants with prior early-stage diagnosis had ketonuria (22.2% vs 78.4%, p<0.001) or required insulin treatment (72.3% vs 98.1%, p<0.05) and only 2.5% presented with diabetic ketoacidosis at diagnosis of stage 3 type 1 diabetes. Outcomes in children with a prior early-stage diagnosis were not associated with a family history of type 1 diabetes or diagnosis during the COVID-19 pandemic. A milder clinical presentation was observed in children who participated in education and monitoring after early-stage diagnosis. CONCLUSIONS/INTERPRETATION: Diagnosis of presymptomatic type 1 diabetes in children followed by education and monitoring improved clinical presentation at the onset of stage 3 type 1 diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/drug therapy , Pandemics , Public Health , Insulin/therapeutic use
5.
Environ Res ; 232: 116325, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37271437

ABSTRACT

BACKGROUND: Emerging evidence supports an association between light at night (LAN) exposure with obesity or overweight in adults. However, effects of LAN exposure during childhood have yet to be further investigated. OBJECTIVE: In this study, we aimed to determine whether LAN exposure is associated with body mass in young children. RESEARCH DESIGN AND METHOD: We used data from the Fr1da cohort study which screened children for early-stage islet autoimmunity in Bavaria, Germany from February 2015 to March 2019. A total of 62,212 children aged <11 years with complete residential information was included in the analysis. Self-reported weight and height were used to calculate age- and sex-specific body mass index (BMI) z-scores. LAN exposure was based on remotely sensed images from Visible Infrared Imaging Radiometer Suite and assigned to the children's residencies. We used generalized additive models to estimate the associations between LAN exposure and BMI adjusting for potential confounders. RESULTS: We observed an increase in BMI z-scores of 34.0% (95% confidence interval (CI): 25.4-42.6) per 10 nW/cm2/sr increment in LAN exposure at baseline (2015) and of 32.6% (24.3-41.0) for LAN exposure one year prior to screening, both adjusted for age and sex. Similar associations were observed after adjustment for socioeconomic status and urbanization degree. CONCLUSION: Our findings suggest that outdoor light exposure may be a risk factor for weight gain during childhood.


Subject(s)
Body Mass Index , Body Weight , Environmental Exposure , Light Pollution , Humans , Child , Germany , Age Factors , Sex Factors , Light , Child, Preschool , Light Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Weight Gain
6.
Diabetologia ; 65(12): 2121-2131, 2022 12.
Article in English | MEDLINE | ID: mdl-36028774

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to develop strategies that identify children from the general population who have late-stage presymptomatic type 1 diabetes and may, therefore, benefit from immune intervention. METHODS: We tested children from Bavaria, Germany, aged 1.75-10 years, enrolled in the Fr1da public health screening programme for islet autoantibodies (n=154,462). OGTT and HbA1c were assessed in children with multiple islet autoantibodies for diagnosis of presymptomatic stage 1 (normoglycaemia) or stage 2 (dysglycaemia) type 1 diabetes. Cox proportional hazards and penalised logistic regression of autoantibody, genetic, metabolic and demographic information were used to develop a progression likelihood score to identify children with stage 1 type 1 diabetes who progressed to stage 3 (clinical) type 1 diabetes within 2 years. RESULTS: Of 447 children with multiple islet autoantibodies, 364 (81.4%) were staged. Undiagnosed stage 3 type 1 diabetes, presymptomatic stage 2, and stage 1 type 1 diabetes were detected in 41 (0.027% of screened children), 30 (0.019%) and 293 (0.19%) children, respectively. The 2 year risk for progression to stage 3 type 1 diabetes was 48% (95% CI 34, 58) in children with stage 2 type 1 diabetes (annualised risk, 28%). HbA1c, islet antigen-2 autoantibody positivity and titre, and the 90 min OGTT value were predictors of progression in children with stage 1 type 1 diabetes. The derived progression likelihood score identified substages corresponding to ≤90th centile (stage 1a, n=258) and >90th centile (stage 1b, n=29; 0.019%) of stage 1 children with a 4.1% (95% CI 1.4, 6.7) and 46% (95% CI 21, 63) 2 year risk of progressing to stage 3 type 1 diabetes, respectively. CONCLUSIONS/INTERPRETATION: Public health screening for islet autoantibodies found 0.027% of children to have undiagnosed clinical type 1 diabetes and 0.038% to have undiagnosed presymptomatic stage 2 or stage 1b type 1 diabetes, with 50% risk to develop clinical type 1 diabetes within 2 years.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Diabetes Mellitus, Type 1/epidemiology , Islets of Langerhans/metabolism , Public Health , Autoantibodies , Mass Screening , Disease Progression
7.
Pediatr Diabetes ; 23(6): 714-720, 2022 09.
Article in English | MEDLINE | ID: mdl-35561070

ABSTRACT

OBJECTIVE: Type 1 diabetes is associated with autoantibodies to different organs that include the gut. The objective of the study was to determine the risk of developing gastric parietal cell autoimmunity in relation to other autoimmunity in individuals with a family history of type 1 diabetes. METHODS: Autoantibodies to the parietal cell autoantigen, H+ /K+ ATPase subunit A (ATP4A) was measured in 2218 first-degree relatives of patients with type 1 diabetes, who were prospectively followed from birth for a median of 14.5 years. All were also tested regularly for the development of islet autoantibodies, transglutaminase autoantibodies, and thyroid peroxidase autoantibodies. RESULTS: The cumulative risk to develop ATP4A autoantibodies was 8.1% (95% CI, 6.6-9.6) by age 20 years with a maximum incidence observed at age 2 years. Risk was increased in females (HR, 1.9; 95% CI, 1.3-2.8; p = 0.0004), relatives with the HLA DR4-DQ8/DR4-DQ8 genotype (HR, 3.4; 95% CI, 1.9-5.9; p < 0.0001) and in participants who also had thyroid peroxidase autoantibodies (HR, 3.7; 95% CI, 2.5-5.5; p < 0.0001). Risk for at least one of ATP4A-, islet-, transglutaminase-, or thyroid peroxidase-autoantibodies was 24.7% (95% CI, 22.6-26.7) by age 20 years and was 47.3% (95% CI, 41.3-53.3) in relatives who had an HLA DR3/DR4-DQ8, DR4-DQ8/DR4-DQ8, or DR3/DR3 genotype (p < 0.0001 vs. other genotypes). CONCLUSIONS: Relatives of patients with type 1 diabetes who have risk genotypes are at very high risk for the development of autoimmunity against gastric and other organs.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , H(+)-K(+)-Exchanging ATPase , Islets of Langerhans , Adolescent , Autoantibodies/genetics , Autoimmunity/genetics , Child , Child, Preschool , Female , Genotype , H(+)-K(+)-Exchanging ATPase/immunology , HLA-DR4 Antigen/genetics , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Transglutaminases/metabolism , Young Adult
8.
Pediatr Diabetes ; 23(8): 1707-1716, 2022 12.
Article in English | MEDLINE | ID: mdl-36323590

ABSTRACT

INTRODUCTION: This study examined the emotional impact that parents experience when confronted with an increased genetic risk of type 1 diabetes (T1D) in their child. Population-based screening of neonates for genetic risk of chronic disease carries the risk of increased emotional burden for parents. METHODS: Information was collected using a well-being questionnaire for parents of infants identified as having an increased risk for T1D in a multinational research study. Parents were asked to complete this questionnaire after they were told their child had an increased risk for T1D (Freder1k-study) and at several time points during an intervention study (POInT-study), where oral insulin was administered daily. RESULTS: Data were collected from 2595 parents of 1371 children across five countries. Panic-related anxiety symptoms were reported by only 4.9% after hearing about their child having an increased risk. Symptoms of depression were limited to 19.4% of the parents at the result-communication visit and declined over time during the intervention study. When thinking about their child's risk for developing T1D (disease-specific anxiety), 47.2% worried, felt nervous and tense. Mothers and parents with a first-degree relative (FDR) with T1D reported more symptoms of depression and disease-specific anxiety (p < 0.001) than fathers and parents without a FDR. CONCLUSION: Overall, symptoms of depression and panic-related anxiety are comparable with the German population. When asked about their child's risk for T1D during the intervention study, some parents reported disease-specific anxiety, which should be kept in mind when considering population-based screening. As certain subgroups are more prone, it will be important to continue psychological screening and, when necessary, to provide support by an experienced, multidisciplinary team.


Subject(s)
Diabetes Mellitus, Type 1 , Infant , Female , Infant, Newborn , Child , Humans , Diabetes Mellitus, Type 1/psychology , Emotions , Parents/psychology , Mothers/psychology , Anxiety/etiology
9.
Environ Res ; 212(Pt D): 113503, 2022 09.
Article in English | MEDLINE | ID: mdl-35609657

ABSTRACT

OBJECTIVE: Incidence of early-onset type 1 diabetes (T1D) has been increasing worldwide. Only few studies examined the relationship between geographical environmental variation and T1D incidence or its presymptomatic stage of islet autoimmunity. Our study aimed to investigate the effect of long-term environmental exposures during pregnancy and early life on childhood islet autoimmunity. RESEARCH DESIGN AND METHODS: We used data from the Fr1da cohort study which screened children aged 1.75-5.99 years for multiple islet autoantibodies in Bavaria, Germany between 2015 and 2019. We included 85,251 children with valid residential information. Daily averages for particulate matter with a diameter <2.5 µm, nitrogen dioxide, ozone, air temperature, and greenness were averaged for each zip-code or directly assigned to the addresses. The exposure windows included pregnancy, the first year and the first two years of life. Generalized additive models adjusting for individual and socioeconomic variables were used to investigate associations between environmental exposures and islet autoimmunity development. RESULTS: Islet autoimmunity was diagnosed in 272 children. Colder air temperature during pregnancy was associated with developing islet autoimmunity at the address (per 2.2 °C decrease, Odds ratio (OR): 1.49; 95% Confidence interval (CI): 1.21-1.83) and zip-code level (per 2.4 °C decrease, OR: 1.31; 95% CI: 1.08-1.59). Using the addresses, significant associations were also observed during the first years of life. CONCLUSION: In this study, children's residential exposure to lower levels of air temperature during pregnancy and early life increased the risk of islet autoimmunity before the age of six.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 1 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Autoimmunity , Child , Cohort Studies , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/etiology , Environmental Exposure/analysis , Female , Germany/epidemiology , Humans , Particulate Matter/analysis , Pregnancy
10.
J Med Genet ; 56(9): 602-605, 2019 09.
Article in English | MEDLINE | ID: mdl-30287597

ABSTRACT

BACKGROUND: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. METHODS: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. RESULTS: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). CONCLUSIONS: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Autoantibodies/immunology , Child , Child, Preschool , Diabetes Mellitus, Type 1/pathology , Disease Progression , Female , Humans , Infant , Islets of Langerhans/pathology , Male , Prospective Studies , Risk Assessment , Risk Factors
11.
JAMA ; 323(4): 339-351, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31990315

ABSTRACT

IMPORTANCE: Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. OBJECTIVE: To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. DESIGN, SETTING, AND PARTICIPANTS: Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. EXPOSURES: Measurement of islet autoantibodies. MAIN OUTCOMES AND MEASURES: The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; >20 indicates severe depression). RESULTS: Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P < .001). CONCLUSIONS AND RELEVANCE: Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies.


Subject(s)
Autoantibodies/blood , Diabetes Mellitus, Type 1/epidemiology , Islets of Langerhans/immunology , Mass Screening , Asymptomatic Diseases/epidemiology , Asymptomatic Diseases/psychology , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/psychology , Female , Follow-Up Studies , Germany/epidemiology , Humans , Male , Parents , Surveys and Questionnaires
12.
BMC Med ; 17(1): 125, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31286933

ABSTRACT

BACKGROUND: Autoimmune diseases are often preceded by an asymptomatic autoantibody-positive phase. In type 1 diabetes, the detection of autoantibodies to pancreatic islet antigens in genetically at-risk children is prognostic for future clinical diabetes. Testing for islet autoantibodies is, therefore, performed in a range of clinical studies. Accurate risk estimates that consider the a priori genetic risk and other risk modifiers are an important component of screening. The age of an individual is an under-appreciated risk modifier. The aim of this study was to provide age-adjusted risk estimates for the development of autoantibodies across childhood in genetically at-risk children. METHODS: The prospective BABYDIAB and BABYDIET studies included 2441 children from birth who had a first-degree relative with type 1 diabetes. Children were born between 1989 and 2006 and were regularly followed from birth for the development of islet autoantibodies and diabetes. A landmark analysis was performed to estimate the risk of islet autoantibodies at birth and at the age 3.5, 6.5 and 12.5 years. Exponential decay curves were fitted for the risk by the age of 20 years. RESULTS: The risk of islet autoantibodies by the age of 20 years was 8%, 4.6%, 2.6% and 0.9%, at the landmark ages of birth, 3.5, 6.5 and 12.5 years, respectively. The short-term risks (within 6 years of follow-up) at these landmark ages were 5.3%, 2.9%, 1.8% and 1%, respectively. The decline in autoantibody risk with age was modelled using a one-phase exponential decay curve (r = 0.99) with a risk half-life of 3.7 years. This risk decay model was remarkably consistent when the outcome was defined as islet autoantibody-positive or multiple islet autoantibody-positive and when the study cohort was stratified by HLA risk genotype. A similar decay model was observed for coeliac disease-associated transglutaminase antibodies in the same cohort. Unlike the risk of developing islet autoantibodies, the rate of developing clinical diabetes in children who were islet autoantibody-positive did not decline with age. CONCLUSION: The risk of developing autoantibodies drops exponentially with age in children with a first-degree relative with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Age Factors , Child , Child, Preschool , Cohort Studies , Diabetes Mellitus, Type 1/pathology , Female , Humans , Infant , Infant, Newborn , Male , Neoplasm Staging , Prospective Studies
13.
Pediatr Diabetes ; 20(6): 720-727, 2019 09.
Article in English | MEDLINE | ID: mdl-31192505

ABSTRACT

Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Genetic Testing , Patient Selection , Primary Prevention/methods , Autoantibodies/genetics , Autoimmunity/genetics , Diabetes Mellitus, Type 1/diagnosis , Europe , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Islets of Langerhans/immunology , Male , Neonatal Screening , Polymorphism, Single Nucleotide , Preliminary Data , Research Design , Risk Factors
16.
Diabetologia ; 61(11): 2319-2332, 2018 11.
Article in English | MEDLINE | ID: mdl-30008062

ABSTRACT

AIMS/HYPOTHESIS: Exposure to an intrauterine hyperglycaemic environment has been suggested to increase the offspring's later risk for being overweight or having metabolic abnormalities, but conclusive evidence for pregnancies affected by maternal type 1 diabetes is still lacking. This study aims to analyse the relationship between maternal type 1 diabetes and the offspring's metabolic health and investigate whether birthweight and/or changes in the offspring's metabolome are in the potential pathway. METHODS: We analysed data from 610 and 2169 offspring having a first-degree relative with type 1 diabetes from the TEENDIAB and BABYDIAB/BABYDIET cohorts, respectively. Anthropometric and metabolic outcomes, assessed longitudinally at 0.3-18 years of age, were compared between offspring of mothers with type 1 diabetes and offspring of non-diabetic mothers but with fathers or siblings with type 1 diabetes using mixed regression models. Non-targeted metabolomic measurements were carried out in 500 individuals from TEENDIAB and analysed with maternal type 1 diabetes and offspring overweight status. RESULTS: The offspring of mothers with type 1 diabetes had a higher BMI SD score (SDS) and an increased risk for being overweight than the offspring of non-diabetic mothers (e.g. OR for overweight status in TEENDIAB 2.40 [95% CI 1.41, 4.06]). Further, waist circumference SDS, fasting levels of glucose, insulin and C-peptide, and insulin resistance and abdominal obesity were significantly increased in the offspring of mothers with type 1 diabetes, even when adjusted for potential confounders and birthweight. Metabolite patterns related to androgenic steroids and branched-chain amino acids were found to be associated with offspring's overweight status, but no significant associations were observed between maternal type 1 diabetes and metabolite concentrations in the offspring. CONCLUSIONS/INTERPRETATION: Maternal type 1 diabetes is associated with offspring's overweight status and metabolic health in later life, but this is unlikely to be caused by alterations in the offspring's metabolome.


Subject(s)
Adiposity/physiology , Birth Weight , Diabetes Mellitus, Type 1/complications , Adolescent , Birth Weight/physiology , Child , Female , Humans , Male , Mothers , Nutritional Physiological Phenomena , Pregnancy , Prospective Studies
17.
PLoS Med ; 15(4): e1002548, 2018 04.
Article in English | MEDLINE | ID: mdl-29614081

ABSTRACT

BACKGROUND: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. METHODS AND FINDINGS: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%-6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%-4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%-13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%-4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%-9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%-3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%-54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%-60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case-control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. CONCLUSIONS: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.


Subject(s)
Autoantibodies/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Testing , Islets of Langerhans/immunology , Case-Control Studies , Child , Child, Preschool , Family , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Risk Assessment , Risk Factors
18.
Horm Metab Res ; 50(1): 44-49, 2018 01.
Article in English | MEDLINE | ID: mdl-29121687

ABSTRACT

An increased risk for type 1 diabetes can be identified using genetic and immune markers. The Freder1k study introduces genetic testing for type 1 diabetes risk within the context of the newborn screening in order to identify newborns with a high risk to develop type 1 diabetes for follow-up testing of early stage type 1 diabetes and for primary prevention trials. Consent for research-based genetic testing of type 1 diabetes risk is obtained with newborn screening. Increased risk is assessed using three single nucleotide polymorphisms for HLA DRB1*03 (DR3), HLA DRB1*04 (DR4), HLA DQB1*0302 (DQ8) alleles, and defined as 1. an HLA DR3/DR4-DQ8 or DR4-DQ8/DR4-DQ8 genotype or 2. an HLA DR4-DQ8 haplotype and a first-degree family history of type 1 diabetes. Families of infants with increased risk are asked to participate in follow-up visits at infant age 6 months, 2 years, and 4 years for autoantibody testing and early diagnosis of type 1 diabetes. After 8 months, the screening rate has reached 181 per week, with 63% coverage of newborns within Freder1k-clinics and 24% of all registered births in Saxony. Of 4178 screened, 2.6% were identified to have an increased risk, and around 80% of eligible infants were recruited to follow-up. Psychological assessment of eligible families is ongoing with none of 31 families demonstrating signs of excessive burden associated with knowledge of type 1 diabetes risk. This pilot study has shown that it is feasible to perform genetic risk testing for childhood disease within the context of newborn screening programs.


Subject(s)
Diabetes Mellitus, Type 1/diagnosis , Mass Screening , Cost of Illness , Humans , Infant, Newborn , Parents/psychology , Pilot Projects , Risk Factors
19.
Pediatr Diabetes ; 19(2): 277-283, 2018 03.
Article in English | MEDLINE | ID: mdl-28695611

ABSTRACT

BACKGROUND: Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. METHODS: The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). RESULTS: Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , HLA-D Antigens/genetics , Models, Genetic , Polymorphism, Single Nucleotide , Autoantibodies/analysis , Child , Child, Preschool , Cohort Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/immunology , Discriminant Analysis , Disease-Free Survival , Family Health , Female , HLA-D Antigens/chemistry , Humans , Infant , Insulin/chemistry , Insulin/genetics , Kaplan-Meier Estimate , Longitudinal Studies , Male , Prospective Studies , Protein Tyrosine Phosphatase, Non-Receptor Type 22/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
SELECTION OF CITATIONS
SEARCH DETAIL