Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401179

ABSTRACT

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Subject(s)
Aortic Valve Stenosis , Cardiomegaly , Animals , Mice , Cardiomegaly/pathology , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Aortic Valve Stenosis/metabolism , Mice, Knockout
2.
Mol Biol Cell ; 35(5): ar74, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536439

ABSTRACT

Imbalances in mitochondrial proteostasis are associated with pathologic mitochondrial dysfunction implicated in etiologically diverse diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria in response to mitochondrial stress. Numerous stress-responsive signaling pathways have been suggested to regulate mitochondria in response to proteotoxic stress. These include the integrated stress response (ISR), the heat shock response (HSR), and the oxidative stress response (OSR). Here, we define the stress signaling pathways activated in response to chronic mitochondrial proteostasis perturbations by monitoring the expression of sets of genes regulated downstream of each of these signaling pathways in published Perturb-seq datasets from K562 cells CRISPRi-depleted of mitochondrial proteostasis factors. Interestingly, we find that the ISR is preferentially activated in response to chronic, genetically-induced mitochondrial proteostasis stress, with no other pathway showing significant activation. Further, we demonstrate that CRISPRi depletion of other mitochondria-localized proteins similarly shows preferential activation of the ISR relative to other stress-responsive signaling pathways. These results both establish our gene set profiling approach as a viable strategy to probe stress responsive signaling pathways induced by perturbations to specific organelles and identify the ISR as the predominant stress-responsive signaling pathway activated in response to chronic disruption of mitochondrial proteostasis.


Subject(s)
Mitochondria , Proteostasis , Proteostasis/physiology , Mitochondria/metabolism , Oxidative Stress , Signal Transduction/physiology , Heat-Shock Response , Mitochondrial Proteins/metabolism
3.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352575

ABSTRACT

Imbalances in mitochondrial proteostasis are associated with pathologic mitochondrial dysfunction implicated in etiologically-diverse diseases. This has led to considerable interest in defining the biological mechanisms responsible for regulating mitochondria in response to mitochondrial stress. Numerous stress responsive signaling pathways have been suggested to regulate mitochondria in response to proteotoxic stress, including the integrated stress response (ISR), the heat shock response (HSR), and the oxidative stress response (OSR). Here, we define the specific stress signaling pathways activated in response to mitochondrial proteostasis stress by monitoring the expression of sets of genes regulated downstream of each of these signaling pathways in published Perturb-seq datasets from K562 cells CRISPRi-depleted of individual mitochondrial proteostasis factors. Interestingly, we find that the ISR is preferentially activated in response to mitochondrial proteostasis stress, with no other pathway showing significant activation. Further expanding this study, we show that broad depletion of mitochondria-localized proteins similarly shows preferential activation of the ISR relative to other stress-responsive signaling pathways. These results both establish our gene set profiling approach as a viable strategy to probe stress responsive signaling pathways induced by perturbations to specific organelles and identify the ISR as the predominant stress-responsive signaling pathway activated in response to mitochondrial proteostasis disruption.

4.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659753

ABSTRACT

The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity are not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme PGK1 results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent crosslinking-based mechanism, promoting inter- and intra-protein MICA posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.

5.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915623

ABSTRACT

Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically-diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic, stress-independent activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic, stress-independent activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that stress-independent activation of these ISR kinases reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic, stress-independent activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.

6.
ACS Chem Biol ; 19(2): 254-265, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38198472

ABSTRACT

The NLRP3 inflammasome is a cytosolic protein complex important for the regulation and secretion of inflammatory cytokines, including IL-1ß and IL-18. Aberrant overactivation of NLRP3 is implicated in numerous inflammatory disorders. However, the activation and regulation of NLRP3 inflammasome signaling remain poorly understood, limiting our ability to develop pharmacologic approaches to target this important inflammatory complex. Here, we developed and implemented a high-throughput screen to identify compounds that inhibit the inflammasome assembly and activity. From this screen, we identify and profile inflammasome inhibition of 20 new covalent compounds across nine different chemical scaffolds, as well as many known inflammasome covalent inhibitors. Intriguingly, our results indicate that NLRP3 possesses numerous reactive cysteines on multiple domains whose covalent targeting blocks the activation of this inflammatory complex. Specifically, focusing on compound VLX1570, which possesses multiple electrophilic moieties, we demonstrate that this compound allows covalent, intermolecular cross-linking of NLRP3 cysteines to inhibit inflammasome assembly. Our results, along with the recent identification of numerous covalent molecules that inhibit NLRP3 inflammasome activation, further support the continued development of electrophilic compounds that target reactive cysteine residues on NLRP3 to regulate its activation and activity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Cytokines , Interleukin-1beta/metabolism
7.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352425

ABSTRACT

Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.

SELECTION OF CITATIONS
SEARCH DETAIL