Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 81(23): 4924-4941.e10, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34739872

ABSTRACT

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.


Subject(s)
Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , RNA, Small Cytoplasmic/genetics , Aged , Carcinogenesis , Chromatin/metabolism , Enhancer Elements, Genetic , Epithelial-Mesenchymal Transition , Female , Gastrointestinal Stromal Tumors/genetics , Gene Library , Genetic Techniques , Genomics , Humans , Kaplan-Meier Estimate , Middle Aged , Oncogenes , Ovary/metabolism , Proteomics , RNA-Seq , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Transcriptome
2.
Ecotoxicol Environ Saf ; 249: 114448, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321667

ABSTRACT

The aim of this study was to evaluate the quantitative and qualitative changes in the proteome of the hemolymph of female Steatoda grossa spiders (Theridiidae) that were chronically exposed to cadmium and copper in food and were additionally immunostimulated (phorbol 12-myristate 13-acetate (PMA); bacterial suspensions: Staphylococcus aureus (G+), Pseudomonas fluorescens (G-). It was found that the expression of nearly 90 proteins was altered in cadmium-intoxicated spiders and more than 60 in copper-exposed individuals. Regardless of the type of metal used, these proteins were mainly overexpressed in the hemolymph of the exposed spiders. On the other hand, immunostimulation did not significantly change the number of proteins with altered expression in metal-intoxicated individuals. Hemocyanin (Hc) was found to be the most abundant of the proteins identified with altered expression. In copper-intoxicated spiders, immunostimulation increased the expression of A-, E-, F-, and G-chain-containing proteins, while in the case of cadmium-intoxicates spiders, it decreased the expression of E- and A-chain-containing Hc and increased the expression of G-chain-containing Hc. Regardless of the type of metal and immunostimulant used, there was an increase in the expression of actin. In addition, cadmium increased the expression of cullin, vimentin, and ceruloplasmin. The changes observed in the expression of hemolymph proteins indicate their protective function in S. grossa (Theridiidae) spiders under conditions of metal exposure.


Subject(s)
Copper , Spiders , Animals , Female , Cadmium/metabolism , Copper/metabolism , Hemocyanins/metabolism , Hemolymph , Proteome/metabolism
3.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685859

ABSTRACT

Male breast cancer represents about 1% of all breast cancer diagnoses and, although there are some similarities between male and female breast cancer, the paucity of data available on male breast cancer makes it difficult to establish targeted therapies. To date, most male breast cancers (MBCs) are treated according to protocols established for female breast cancer (FBC). Thus, defining the transcriptional and epigenetic landscape of MBC with improved resolution is critical for developing better avenues for therapeutic intervention. In this study, we present matched transcriptional (scRNA-seq) and epigenetic (scATAC-seq) profiles at single-cell resolution of two treatment naïve MBC tumors processed immediately after surgical resection. These data enable the detection of differentially expressed genes between male and female breast tumors across immune, stromal, and malignant cell types, to highlight several genes that may have therapeutic implications. Notably, MYC target genes and mTORC1 signaling genes were significantly upregulated in the malignant cells of MBC compared to the female counterparts. To understand how the regulatory landscape of MBC gives rise to these male-specific gene expression patterns, we leveraged the scATAC-seq data to systematically link changes in chromatin accessibility to changes in gene expression within each cell type. We observed cancer-specific rewiring of several salient enhancers and posit that these enhancers have a higher regulatory load than lineage-specific enhancers. We highlight two examples of previously unannotated cancer-cell-specific enhancers of ANXA2 and PRDX4 gene expression and show evidence for super-enhancer regulation of LAMB3 and CD47 in male breast cancer cells. Overall, this dataset annotates clinically relevant regulatory networks in male breast tumors, providing a useful resource that expands our current understanding of the gene expression programs that underlie the biology of MBC.


Subject(s)
Mammary Neoplasms, Animal , Regulatory Sequences, Nucleic Acid , Female , Male , Animals , Chromatin , Epigenomics , Epigenesis, Genetic
4.
Ecotoxicol Environ Saf ; 149: 267-274, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29253786

ABSTRACT

The aim of this study was to evaluate the metabolic condition of Steatoda grossa (Theridiidae) spider, from their hemocytes, after a short-term (four-week) exposure to cadmium and copper in sublethal doses by administering them into the body of the preys. The ultrastructure of the dominant types of hemocytes, such as granulocytes, plasmatocytes and prohemocytes, was evaluated using transmission electron microscope (TEM). Quantitative evaluation of apoptotic and necrotic cells, as well as the ones with depolarized mitochondria in hemolymph, was performed using flow cytometry, while ATP concentration and ADP/ATP ratio in hemocytes were measured by luminescent methods. Cadmium, unlike copper, demonstrated proapoptotic and pronecrotic activity. Low ATP levels and high ADP/ATP ratio in hemocytes indicate a disturbance in the energy metabolism of cells and may account for their qualitative and quantitative degenerative changes. The intensification of death processes in hemocytes after an exposure to cadmium-contaminated food may impair the ability of these cells to fight infectious diseases. Copper at the applied dosage was safe for the spiders without causing visible changes in the hemocyte ultrastructure and in the level of analyzed cell death indices.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Environmental Pollutants/toxicity , Hemocytes/drug effects , Spiders/drug effects , Animal Feed , Animals , Energy Metabolism/drug effects , Hemocytes/ultrastructure , Hemolymph/drug effects
5.
Pediatr Res ; 79(5): 759-65, 2016 05.
Article in English | MEDLINE | ID: mdl-26756781

ABSTRACT

BACKGROUND: Exposure of neonatal mice to hyperoxia results in pulmonary vascular remodeling and aberrant phosphodiesterase type 5 (PDE5) signaling. Although glucocorticoids are frequently utilized in the NICU, little is known about their effects on the developing pulmonary vasculature and on PDE5. We sought to determine the effects of hydrocortisone (HC) on pulmonary vascular development and on PDE5 in a neonatal mouse model of hyperoxic lung injury. METHODS: C57BL/6 mice were placed in 21% O2 or 75% O2 within 24 h of birth and received HC (1, 5, or 10 mg/kg subcutaneously every other day) or vehicle. At 14 d, right ventricular hypertrophy (RVH), medial wall thickness (MWT), lung morphometry, and pulmonary artery (PA) PDE5 activity were assessed. PDE5 activity was measured in isolated pulmonary artery smooth muscle cells exposed to 21 or 95% O2 ± 100 nmol/l HC for 24 h. RESULTS: Hyperoxia resulted in alveolar simplification, RVH, increased MWT, and increased PA PDE5 activity. HC decreased hyperoxia-induced RVH and attenuated MWT. HC had dose-dependent effects on alveolar simplification. HC decreased hyperoxia-induced PDE5 activity both in vivo and in vitro. CONCLUSIONS: HC decreases hyperoxia-induced pulmonary vascular remodeling and attenuates PDE5 activity. These findings suggest that HC may protect against hyperoxic injury in the developing pulmonary vasculature.


Subject(s)
Glucocorticoids/pharmacology , Hydrocortisone/pharmacology , Hyperoxia/pathology , Lung Injury/pathology , Lung/growth & development , Animals , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Dose-Response Relationship, Drug , Elastin/metabolism , Humans , Hyperoxia/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/physiopathology , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/metabolism , Pulmonary Artery/pathology , Signal Transduction
6.
Biomimetics (Basel) ; 9(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39194482

ABSTRACT

In this systematic review, the authors aimed to investigate the state of knowledge on in vivo evaluations of chitosan and nanometric hydroxyapatite (nanohydroxyapatite, nHAp) scaffolds for bone-tissue regeneration. In March 2024, an electronic search was systematically conducted across the PubMed, Cochrane, and Web of Science databases using the keywords (hydroxyapatite) AND (chitosan) AND (scaffold) AND (biomimetic). Methodologically, the systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol to the letter. Initially, a total of 375 studies were screened, and 164 duplicates were removed. A further 188 articles were excluded because they did not correspond to the predefined topics, and an additional 3 articles were eliminated due to the inability to obtain the full text. The final compilation included 20 studies. All publications indicated a potential beneficial effect of the scaffolds in in vivo bone defect repair. A beneficial effect of hydroxyapatite as a scaffold component was observed in 16 studies, including greater mechanical resistance, cellular differentiation, and enhanced bone damage regeneration. The addition of chitosan and apatite ceramics, which combined the strengths of both materials, had the potential to become a useful bone-tissue engineering material.

7.
Cancer Res ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186674

ABSTRACT

Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their non-coding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA-seq that enabled unbiased detection of target genes genome-wide. Generation of high resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in TNBC patients. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its enhancer RNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA-seq and ATAC-seq analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared to non-malignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of triple-negative breast cancer.

8.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948758

ABSTRACT

Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.

9.
bioRxiv ; 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37066379

ABSTRACT

In ER+/HER2- breast cancer, multiple measures of intra-tumor heterogeneity are associated with worse response to endocrine therapy. To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live human tumors and normal breast specimens immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors. Tamoxifen resistance signatures from 3 distinct resistant subpopulations are prognostic in large cohorts of ER+ breast cancer patients and enriched in endocrine therapy resistant tumors. This novel ex vivo model system now provides a foundation to define responsive and resistant sub-populations within heterogeneous tumors, to develop precise single cell-based predictors of response to therapy, and to identify genes and pathways driving resistance to therapy.

10.
Clin Cancer Res ; 29(23): 4894-4907, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37747807

ABSTRACT

PURPOSE: In estrogen receptor-positive (ER+)/HER2- breast cancer, multiple measures of intratumor heterogeneity are associated with a worse response to endocrine therapy. We sought to develop a novel experimental model to measure heterogeneity in response to tamoxifen treatment in primary breast tumors. EXPERIMENTAL DESIGN: To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live normal breast specimens and human tumors immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. Live primary cell suspensions were treated ex vivo with tamoxifen (10 µmol/L) or control media for 12 hours, and single-cell RNA libraries were generated using the 10X Genomics droplet-based kit. RESULTS: In total, we obtained and processed normal breast tissue from two women undergoing reduction mammoplasty and tumor tissue from 10 women with ER+/HER2- invasive breast carcinoma. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors. Tamoxifen resistance signatures from resistant subpopulations predict poor outcomes in two large cohorts of ER+ breast cancer patients and are enriched in endocrine therapy-resistant tumors. CONCLUSIONS: This novel ex vivo model system now provides the foundation to define responsive and resistant subpopulations within heterogeneous human tumors, which can be used to develop precise single cell-based predictors of response to therapy and to identify genes and pathways driving therapeutic resistance.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use
11.
Biology (Basel) ; 11(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35625363

ABSTRACT

The literature lacks conclusive evidence that lymphatic vessels can form in the dental pulp. Lymphangiogenesis is believed to occur in an inflamed pulp. If one defines lymphangiogenesis as the development of lymphatic vessels from already existing ones, such a mechanism is possible only when lymphatic vessels are present in healthy teeth. This paper aims to identify lymphatic vessels in the dental pulp using microscopic and immunohistochemical methods under physiological and pathological conditions. The tissue material consisted of human teeth intended for extraction. Our studies and results suggest a moderate correlation between pulp inflammation and the formation of new vessels, including lymphatic vessels.

12.
Article in English | MEDLINE | ID: mdl-34718188

ABSTRACT

The aim of this study was to analyze whether, and to what extent, long-term exposure to cadmium, administered in sublethal concentrations by the oral route, caused changes in the immune potential of hemocytes in adult female Steatoda grossa spiders. We used artificial and natural immunostimulants, namely phorbol 12-myristate 13-acetate (PMA) and bacterial cell suspension based on Gram-positive (G+, Staphylococcus aureus) and Gram-negative (G-, Pseudomonas fluorescens) bacteria, to compare the status of hemocytes in nonstimulated individuals and those subjected to immunostimulation. After cadmium exposure, the percentage of small nongranular hemocytes in response to G+ cell suspension and PMA mitogen was decreased. Furthermore, in the cadmium-intoxicated spiders the percentage of plasmatocytes after immunostimulation remained lower compared to the complementary control group. Exposure to cadmium also induced several degenerative changes, including typical apoptotic and necrotic changes, in the analyzed types of cells. Immunostimulation by PMA mitogen and G+ bacterial suspension resulted in an increase in the number of cisterns in the rough endoplasmic reticulum of granulocytes, in both the control group and cadmium-treated individuals. These changes were accompanied with a low level of metallothioneins in hemolymph. Chronic cadmium exposure may significantly weaken the immune defense system of spiders during infections.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cadmium/toxicity , Hemocytes/drug effects , Spiders/cytology , Animals
13.
Cancers (Basel) ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35406623

ABSTRACT

Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo. Using a combination of eRNA transcription and chromatin modifications, we have identified a novel enhancer located 30 kb upstream of Colony Stimulating Factor 1 (CSF1). Notably, CSF1 is implicated in the progression of breast cancer, is overexpressed in triple-negative breast cancer (TNBC) cell lines, and its enhancer is primarily active in TNBC patient tumors. Genomic deletion of the enhancer (via CRISPR/Cas9) enabled us to validate this regulatory element as a bona fide enhancer of CSF1 and subsequent cell-based assays revealed profound effects on cancer cell proliferation, colony formation, and migration. Epigenetic silencing of the enhancer via CRISPR-interference assays (dCas9-KRAB) coupled to RNA-sequencing, enabled unbiased identification of additional target genes, such as RSAD2, that are predictive of clinical outcome. Additionally, we repurposed the RNA-guided RNA-targeting CRISPR-Cas13 machinery to specifically degrade the eRNAs transcripts produced at this enhancer to determine the consequences on CSF1 mRNA expression, suggesting a post-transcriptional role for these non-coding transcripts. Finally, we test our eRNA-dependent model of CSF1 enhancer function and demonstrate that our results are extensible to other forms of cancer. Collectively, this work describes a novel enhancer that is active in the TNBC subtype, which is associated with cellular growth, and requires eRNA transcripts for proper enhancer function. These results demonstrate the significant impact of enhancers in cancer biology and highlight their potential as tractable targets for therapeutic intervention.

14.
Nat Commun ; 13(1): 4247, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869079

ABSTRACT

The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers, using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to nominate two salient super-enhancers that drive proliferation and migration of cancer cells. Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct target genes for these super-enhancers and confirm their activity specifically within the cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-omic approach examines a number of fundamental questions about how regulatory information encoded into super-enhancers drives gene expression networks that underlie the biology of ovarian cancer.


Subject(s)
Enhancer Elements, Genetic , Ovarian Neoplasms , Carcinogenesis/genetics , Carcinoma, Ovarian Epithelial/genetics , Chromatin , Enhancer Elements, Genetic/genetics , Female , Gene Expression , Humans , Ovarian Neoplasms/genetics
15.
Biology (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34943171

ABSTRACT

Despite many studies, opinions on the lymphatic system of the teeth are still incompatible. Studies using light and electron microscopy and directly using methods such as a radioisotope (radionuclide) scan and interstitial fluid pressure measurement reported incomplete results. Immunohistochemistry (IHC) plays the main role in investigating presence of the lymphatic system in dental tissues. This method uses labeled antibodies against antigens typical of lymphatic vessels. The use of appropriate staining enables the detection of antigen-antibody reaction products using a light (optical), electron or fluorescence microscope. However, these studies do not show the system of vessels, their histologic structure under physiological conditions and inflammation as well as the lymphangiogenesis process in the dental pulp. Unfortunately, there is a lack of studies associating the presence of lymphatic vessels in the dental pulp with local lymphatic nodes or large vessels outside the tooth. In the scientific and research environment, the evaluation of the lymphatic system of the teeth is problematic because it is quite difficult to clearly distinguish lymphatic vessels from small blood vessels. Despite many indications of the presence of lymphatic vessels in the pulp chamber, this problem remains open and needs further research.

16.
Sci Total Environ ; 774: 145070, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33607434

ABSTRACT

Integrated buffer zones (IBZ) are novel mitigation measures designed to decrease the loading of nitrogen (N) transported by subsurface drainage systems from agricultural fields to streams. In IBZ, drainage water flows into a pond with free water surface followed by an inundated, vegetated filterbed. This design provides an environment favorable for denitrification and thus a decrease in nitrate concentration is expected as water flow through the IBZ. However, due to the establishment of anaerobic conditions, there is a risk for increasing emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4). In this year-long study, we evaluated the N removal efficiency along with the risk of N2O and CH4 emissions from two pilot-scale IBZs (IBZ1 and 2). The two IBZs had very different yearly removal efficiencies, amounting to 29% and 71% of the total N load at IBZ1 and 2, respectively. This was probably due to differences in infiltration rates to the filterbed, which was 22% and 81% of the incoming water at IBZ1 and 2, respectively. The site (IBZ2) with the highest removal efficiency was a net N2O sink, while 0.9% of the removed nitrate was emitted as N2O at IBZ1. Both IBZs were net sources of CH4 but with different pathways of emission. In IBZ1 CH4 was mainly lost directly to the atmosphere, while waterborne losses dominated in IBZ2. In conclusion, the IBZs were effective in removing N three years after establishment, and although the IBZs acted as greenhouse gas sources, especially due to CH4, the emissions were comparable to those of natural wetlands and other drainage transport mitigation measures.

17.
Acta Bioeng Biomech ; 22(3): 185-198, 2020.
Article in English | MEDLINE | ID: mdl-33518722

ABSTRACT

PURPOSE: The present research aimed to determine whether and how the aluminium chloride - based materials affect the cell line of the bacterial line and fungi. METHODS: Cytotoxicity of haemostatic astringents: Alustat (liquid), Alustat (gel), Alustat (foam), Alustin, Hemostat, Racestyptine and Traxodent containing AlCl3 was conducted on L929 cell line with the use of MTT and SRB assays. The antimicrobial activity (CFU and MIC) against C. albicans, S. mutans, L. rhamnosus was determined. RESULTS: In the MTT results, cell viability for all agents were very low. In SRB, the lowest cytotoxicity was demonstrated for Hemostat and Alustat (foam), Traxodent and Racestyptine. Total reduction of the CFU of S. mutans was observed. Alustat (gel) and Alustat (liquid) completely inhibited the growth of C. albicans, S. mutans and L. rhamnosus. CONCLUSIONS: The viability of L929 cells obtained in the SRB assay is more reliable than that obtained in the MTT assay, in the case of gingival haemostatic agents.


Subject(s)
Gingiva/microbiology , Hemostatics/pharmacology , Animals , Anti-Infective Agents/pharmacology , Cell Death/drug effects , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Colony Count, Microbial , Gingiva/drug effects , Hydrogen-Ion Concentration , Mice , Microbial Sensitivity Tests
18.
Sci Total Environ ; 656: 297-306, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30504028

ABSTRACT

The study aimed at comparing the effects of short- and long-term exposure of Steatoda grossa female spiders to cadmium on the web's architecture, its energy content, and ultrastructure of ampullate glands. Simple food chain model (medium with 0.25 mM CdCl2 → Drosophila hydei flies → spider (for 4 weeks or 12 months) was used for the exposure. Analysis of Cd content provided evidence that silk fibers of the web are well protected against its incorporation irrespectively of the exposure period. Long-term exposure to cadmium resulted in the occurrence of numerous autophagosomes with degenerated organelles as well as apoptotic and necrotic cells in the ampullate glands. Concurrently, the individual silk fibers building double and multiple combination complexes were significantly thinner than in the control threads. Moreover, exposed spiders spun net with smaller mean calorific value than did the control individuals. Hence, evaluation of both the diameter of silk fibers and calorific value of the web can serve as biomarkers of the effects caused by exposure of these predators to cadmium.


Subject(s)
Cadmium/adverse effects , Energy Metabolism , Environmental Exposure , Environmental Pollutants/adverse effects , Spiders/physiology , Animals , Exocrine Glands/ultrastructure , Female , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Silk/chemistry , Spiders/drug effects , Spiders/ultrastructure , Time Factors
19.
Article in English | MEDLINE | ID: mdl-31276814

ABSTRACT

The aim of the study was to compare cellular effects of xenobiotic cadmium and biogenic copper in ampullate silk glands of false black widow Steatoda grossa spider after long-term exposure via ingestion under laboratory conditions. Both the level of selected detoxification parameters (glutathione S-transferase, catalase, and the level of total antioxidant capacity) and degree of genotoxic changes (comet assay) were determined in the silk glands. Additionally the contents of selected amino acids (L-Ala, L-Pro, L-His, L-Phe, DL-Ile, and DL-Asn) in the hunting webs produced by spiders of this species were assessed. The ability of S. grossa females to accumulate cadmium was higher than that for copper. Long-term exposure of spiders to copper did not change the level of detoxification parameters, and the level of DNA damage in the cells of ampullate silk glands was also low. Cadmium had a stronger prooxidative and genotoxic effect than copper in the cells of the analyzed silk glands. However, regardless of the type of metal used, no significant changes in the level of amino acids in silk were found. The obtained results confirmed the effectiveness of metal neutralization mechanisms in the body of the studied spider species, which results in the protection of the function of ampullate silk glands.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Exocrine Glands/drug effects , Spiders/drug effects , Animals , Cadmium/metabolism , Copper/metabolism , DNA Damage , Exocrine Glands/metabolism , Female , Inactivation, Metabolic , Spiders/genetics , Spiders/metabolism
20.
Toxicol Lett ; 232(1): 193-202, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25455453

ABSTRACT

The pregnane X receptor (PXR) is one of the master regulators of xenobiotic transformation. Interactions between pharmacologic compounds and PXR frequently result in drug-to-drug interactions, drug-induced hepatotoxicity, and the development of drug-resistant phenotypes in cancer cells. Potential PXR-mediated effects on drug metabolism can be predicted using high-throughput methods to detect PXR transactivation. We used the reporter cell line nhrtox-hepg2 to screen an 1120-compound library of pharmacologic substances. Using a three-stage screening process combined with a quantitative structure-activity relationships (QSAR) analysis, we detected 16 novel, previously unreported PXR activators capable of upregulating CYP450 expression. For some of these compounds such as mycophenolic acid, leflunomide, and trifluridine, the observed interactions with PXR occurred at clinically significant concentrations and could provide potential mechanistic explanations for observed drug-to-drug interactions and drug-induced toxicity. A parallel QSAR analysis revealed significant correlation between the experimentally measured PXR-dependent bioactivity and the calculated molecular descriptors of the PXR activators.


Subject(s)
Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Liver/drug effects , Receptors, Steroid/agonists , Small Molecule Libraries , Computer Simulation , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inducers/chemistry , Dose-Response Relationship, Drug , Genes, Reporter , Hep G2 Cells , Humans , Ligands , Liver/enzymology , Models, Molecular , Molecular Structure , Pregnane X Receptor , Quantitative Structure-Activity Relationship , Receptors, Steroid/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL