Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell ; 184(15): 3949-3961.e11, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34161776

ABSTRACT

Monoclonal antibodies against SARS-CoV-2 are a clinically validated therapeutic option against COVID-19. Because rapidly emerging virus mutants are becoming the next major concern in the fight against the global pandemic, it is imperative that these therapeutic treatments provide coverage against circulating variants and do not contribute to development of treatment-induced emergent resistance. To this end, we investigated the sequence diversity of the spike protein and monitored emergence of virus variants in SARS-COV-2 isolates found in COVID-19 patients treated with the two-antibody combination REGEN-COV, as well as in preclinical in vitro studies using single, dual, or triple antibody combinations, and in hamster in vivo studies using REGEN-COV or single monoclonal antibody treatments. Our study demonstrates that the combination of non-competing antibodies in REGEN-COV provides protection against all current SARS-CoV-2 variants of concern/interest and also protects against emergence of new variants and their potential seeding into the population in a clinical setting.


Subject(s)
Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/prevention & control , Mutation/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Cryoelectron Microscopy , Hospitalization , Humans , Lung/pathology , Lung/virology , Male , Neutralization Tests , Vero Cells , Viral Load
2.
Clin Infect Dis ; 73(11): e4400-e4408, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32897368

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of childhood medically attended respiratory infection (MARI). METHODS: We conducted a randomized, double-blind, placebo-controlled phase 3 trial in 1154 preterm infants of 1 or 2 doses of suptavumab, a human monoclonal antibody that can bind and block a conserved epitope on RSV A and B subtypes, for the prevention of RSV MARI. The primary endpoint was proportion of subjects with RSV-confirmed hospitalizations or outpatient lower respiratory tract infection (LRTI). RESULTS: There were no significant differences between primary endpoint rates (8.1%, placebo; 7.7%, 1-dose; 9.3%, 2-dose). Suptavumab prevented RSV A infections (relative risks, .38; 95% confidence interval [CI], .14-1.05 in the 1-dose group and .39 [95% CI, .14-1.07] in the 2-dose group; nominal significance of combined suptavumab group vs placebo; P = .0499), while increasing the rate of RSV B infections (relative risk 1.36 [95% CI, .73-2.56] in the 1-dose group and 1.69 [95% CI, .92-3.08] in the 2-dose group; nominal significance of combined suptavumab group vs placebo; P = .12). Sequenced RSV isolates demonstrated no suptavumab epitope changes in RSV A isolates, while all RSV B isolates had 2-amino acid substitution in the suptavumab epitope that led to loss of neutralization activity. Treatment emergent adverse events were balanced across treatment groups. CONCLUSIONS: Suptavumab did not reduce overall RSV hospitalizations or outpatient LRTI because of a newly circulating mutant strain of RSV B. Genetic variation in circulating RSV strains will continue to challenge prevention efforts. CLINICAL TRIALS REGISTRATION: NCT02325791.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Antibodies, Monoclonal/therapeutic use , Antiviral Agents , Humans , Infant , Infant, Newborn , Infant, Premature , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control
3.
Cell Host Microbe ; 31(2): 260-272.e7, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36708708

ABSTRACT

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Antibodies, Viral , Glycoproteins , Epitopes , Antibodies, Neutralizing
4.
Science ; 369(6506): 1014-1018, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32540904

ABSTRACT

Antibodies targeting the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present a promising approach to combat the coronavirus disease 2019 (COVID-19) pandemic; however, concerns remain that mutations can yield antibody resistance. We investigated the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared after in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Escape mutants were not generated after treatment with a noncompeting antibody cocktail.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Betacoronavirus/chemistry , Betacoronavirus/genetics , COVID-19 , Epitopes , Genome, Viral , Humans , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutation , Neutralization Tests , Pandemics , Protein Interaction Domains and Motifs , SARS-CoV-2 , Selection, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Science ; 369(6506): 1010-1014, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32540901

ABSTRACT

Neutralizing antibodies have become an important tool in treating infectious diseases. Recently, two separate approaches yielded successful antibody treatments for Ebola-one from genetically humanized mice and the other from a human survivor. Here, we describe parallel efforts using both humanized mice and convalescent patients to generate antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, which yielded a large collection of fully human antibodies that were characterized for binding, neutralization, and three-dimensional structure. On the basis of these criteria, we selected pairs of highly potent individual antibodies that simultaneously bind the receptor binding domain of the spike protein, thereby providing ideal partners for a therapeutic antibody cocktail that aims to decrease the potential for virus escape mutants that might arise in response to selective pressure from a single-antibody treatment.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Antibody Affinity , Antibody-Dependent Cell Cytotoxicity , Betacoronavirus/chemistry , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , COVID-19 , Cell Line , Coronavirus Infections/therapy , Cytophagocytosis , Epitopes , Humans , Immunization, Passive , Mice , Middle Aged , Models, Molecular , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Interaction Domains and Motifs , Receptors, Coronavirus , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Young Adult , COVID-19 Serotherapy
6.
Mol Cell Biol ; 26(12): 4448-61, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16738312

ABSTRACT

Although many E2F target genes have been identified recently, very little is known about how any single E2F site controls the expression of an E2F target gene in vivo. To test the requirement for a single E2F site in vivo and to learn how E2F-mediated repression is regulated during development and tumorigenesis, we have constructed a novel series of wild-type and mutant Rb promoter-LacZ transgenic reporter lines that allow us to visualize the activity of a crucial E2F target in vivo, the retinoblastoma tumor suppressor gene (Rb). Two mutant Rb promoter-LacZ constructs were used to evaluate the importance of a single E2F site or a nearby activator (Sp1/Ets) site that is found mutated in low-penetrance retinoblastomas. The activity of the wild-type Rb promoter is dynamic, varying spatially and temporally within the developing nervous system. While loss of the activator site silences the Rb promoter, loss of the E2F site stimulates its activity in the neocortex, retina, and trigeminal ganglion. Surprisingly, E2F-mediated repression of Rb does not act globally or in a static manner but, instead, is a highly dynamic process in vivo. Using neocortical extracts, we detected GA-binding protein alpha (GABPalpha, an Ets family member) bound to the activator site and both E2F1 and E2F4 bound to the repressor site of the Rb promoter in vitro. Additionally, we detected binding of both E2F1 and E2F4 to the Rb promoter in vivo using chromatin immunoprecipitation analysis on embryonic day 13.5 brain. Unexpectedly, we detect no evidence for Rb promoter autoregulation in neuroendocrine tumors from Rb+/-; RbP-LacZ mice that undergo loss of heterozygosity at the Rb locus, in contrast to the situation in human retinoblastomas where high RB mRNA levels are found. In summary, this study provides the first demonstration that loss of an E2F site is critical for target gene repression in vivo and underscores the complexity of the Rb and E2F family network in vivo.


Subject(s)
E2F Transcription Factors/metabolism , Animals , Base Sequence , DNA/genetics , Female , Gene Expression Regulation, Developmental , Genes, Reporter , Lac Operon , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Nervous System/embryology , Nervous System/metabolism , Pregnancy , Promoter Regions, Genetic , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
8.
Oncogene ; 23(19): 3296-307, 2004 Apr 22.
Article in English | MEDLINE | ID: mdl-15021915

ABSTRACT

Rb+/- mice develop a complex spectrum of neuroendocrine tumors on a mixed genetic (129Sv x C57BL/6) background. To understand how the 129Sv and C57BL/6 contributions affect Rb+/- tumorigenesis, we serially backcrossed Rb+/- animals to the 129Sv or C57BL/6 strain, and analysed their pathological profiles. Strikingly, the length of survival and the penetrance, severity and multiplicity of neuroendocrine tumors switch dramatically between Rb+/- animals from the two genetic backgrounds. In fact, the 129Sv background significantly enhances both the initiation and progression of tumorigenesis in the intermediate lobe of the pituitary (ILP) in Rb+/- animals. This is due to the surprising fact that ILPs from wild-type 129Sv animals are inherently abnormal, and thus greatly predisposed to neoplasia. This is likely to explain the high incidence of ILP tumors, an otherwise rare tumor type in wild-type mice, in numerous knockout studies performed on the 129Sv strain, and raises the intriguing possibility that the classic Rb+/- neuroendocrine tumors may fade away in another as of yet unidentified inbred strain. Finally, we have increased the utility of the Rb+/- tumor model, since Rb+/- animals on the C57BL/6 background develop high-penetrance tumors of the anterior lobe of the pituitary, a class of tumors estimated to occur in 20-25% of humans.


Subject(s)
Neuroendocrine Tumors/etiology , Pituitary Neoplasms/etiology , Retinoblastoma Protein/physiology , Animals , Dopamine/physiology , Mice , Mice, Inbred C57BL , Neuroendocrine Tumors/pathology , Pituitary Gland/pathology , Pituitary Neoplasms/pathology , Species Specificity , Thyroid Gland/pathology , Thyroid Neoplasms/etiology , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL