Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(5): 444-455, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37883802

ABSTRACT

ABSTRACT: Transglutaminase factor XIII (FXIII) is essential for hemostasis, wound healing, and pregnancy maintenance. Plasma FXIII is composed of A and B subunit dimers synthesized in cells of hematopoietic origin and hepatocytes, respectively. The subunits associate tightly in circulation as FXIII-A2B2. FXIII-B2 stabilizes the (pro)active site-containing FXIII-A subunits. Interestingly, people with genetic FXIII-A deficiency have decreased FXIII-B2, and therapeutic infusion of recombinant FXIII-A2 (rFXIII-A2) increases FXIII-B2, suggesting FXIII-A regulates FXIII-B secretion, production, and/or clearance. We analyzed humans and mice with genetic FXIII-A deficiency and developed a mouse model of rFXIII-A2 infusion to define mechanisms mediating plasma FXIII-B levels. Like humans with FXIII-A deficiency, mice with genetic FXIII-A deficiency had reduced circulating FXIII-B2, and infusion of FXIII-A2 increased FXIII-B2. FXIII-A-deficient mice had normal hepatic function and did not store FXIII-B in liver, indicating FXIII-A does not mediate FXIII-B secretion. Transcriptional analysis and polysome profiling indicated similar F13b levels and ribosome occupancy in FXIII-A-sufficient and -deficient mice and in FXIII-A-deficient mice infused with rFXIII-A2, indicating FXIII-A does not induce de novo FXIII-B synthesis. Unexpectedly, pharmacokinetic/pharmacodynamic modeling of FXIII-B antigen after rFXIII-A2 infusion in humans and mice suggested FXIII-A2 slows FXIII-B2 loss from plasma. Accordingly, comparison of free FXIII-B2 vs FXIII-A2-complexed FXIII-B2 (FXIII-A2B2) infused into mice revealed faster clearance of free FXIII-B2. These data show FXIII-A2 prevents FXIII-B2 loss from circulation and establish the mechanism underlying FXIII-B2 behavior in FXIII-A deficiency and during rFXIII-A2 therapy. Our findings reveal a unique, reciprocal relationship between independently synthesized subunits that mediate an essential hemostatic protein in circulation. This trial was registered at www.ClinicalTrials.com as #NCT00978380.


Subject(s)
Factor XIII Deficiency , Animals , Female , Humans , Mice , Pregnancy , Blood Coagulation Tests , Factor XIII/metabolism , Factor XIII Deficiency/genetics , Factor XIIIa/genetics , Hemostasis , Hemostatics/blood
2.
Blood ; 143(2): 105-117, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37832029

ABSTRACT

ABSTRACT: Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga-/-) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen-platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga-/- mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.


Subject(s)
Hemostatics , Thrombosis , Venous Thrombosis , Animals , Mice , Fibrinogen/metabolism , Hemostasis , Venous Thrombosis/genetics , Venous Thrombosis/metabolism , Thrombosis/metabolism , Blood Platelets/metabolism
3.
Blood ; 141(19): 2390-2401, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36701760

ABSTRACT

C1 inhibitor (C1INH) is a multifunctional serine protease inhibitor that functions as a major negative regulator of several biological pathways, including the contact pathway of blood coagulation. In humans, congenital C1INH deficiency results in a rare episodic bradykinin-mediated swelling disorder called hereditary angioedema (HAE). Patients with C1INH deficiency-associated HAE (C1INH-HAE) have increased circulating markers of activation of coagulation. Furthermore, we recently reported that patients with C1INH-HAE had a moderate but significant increased risk of venous thromboembolism. To further investigate the impact of C1INH deficiency on activation of coagulation and thrombosis, we conducted studies using patient samples and mouse models. Plasmas from patients with C1INH-HAE had significantly increased contact pathway-mediated thrombin generation. C1INH-deficient mice, which have been used as a model of C1INH-HAE, had significantly increased baseline circulating levels of prothrombin fragment 1+2 and thrombin-antithrombin complexes. In addition, whole blood from C1INH-deficient mice supported significantly increased contact pathway-mediated thrombin generation. Importantly, C1INH-deficient mice exhibited significantly enhanced venous, but not arterial, thrombus formation. Furthermore, purified human C1INH normalized contact pathway-mediated thrombin generation and venous thrombosis in C1INH-deficient mice. These findings highlight a key role for endogenous C1INH as a negative regulator of contact pathway-mediated coagulation in humans and mice. Further, this work identifies endogenous C1INH as an important negative regulator of venous thrombus formation in mice, complementing the phenotype associated with C1INH-HAE.


Subject(s)
Angioedemas, Hereditary , Thrombosis , Venous Thrombosis , Humans , Animals , Mice , Angioedemas, Hereditary/genetics , Thrombin , Complement C1 Inhibitor Protein/genetics , Blood Coagulation , Thrombosis/etiology , Venous Thrombosis/etiology
4.
Blood ; 139(21): 3194-3203, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35358299

ABSTRACT

Platelets are critical in hemostasis and a major contributor to arterial thrombosis (AT). (Pre)clinical studies suggest platelets also contribute to venous thrombosis (VT), but the mechanisms are largely unknown. We hypothesized that in VT, platelets use signaling machinery distinct from AT. Here we aimed to characterize the contributions of platelet G protein-coupled (GPCR) and immunoreceptor tyrosine-based activation motif (ITAM) receptor signaling to VT. Wild-type (WT) and transgenic mice were treated with inhibitors to selectively inhibit platelet-signaling pathways: ITAM-CLEC2 (Clec2mKO), glycoprotein VI (JAQ1 antibody), and Bruton's tyrosine kinase (ibrutinib); GPCR-cyclooxygenase 1 (aspirin); and P2Y12 (clopidogrel). VT was induced by inferior vena cava stenosis. Thrombin generation in platelet-rich plasma and whole-blood clot formation were studied ex vivo. Intravital microscopy was used to study platelet-leukocyte interactions after flow restriction. Thrombus weights were reduced in WT mice treated with high-dose aspirin + clopidogrel (dual antiplatelet therapy [DAPT]) but not in mice treated with either inhibitor alone or low-dose DAPT. Similarly, thrombus weights were reduced in mice with impaired ITAM signaling (Clec2mKO + JAQ1; WT + ibrutinib) but not in Clec2mKO or WT + JAQ1 mice. Both aspirin and clopidogrel, but not ibrutinib, protected mice from FeCl3-induced AT. Thrombin generation and clot formation were normal in blood from high-dose DAPT- or ibrutinib-treated mice; however, platelet adhesion and platelet-neutrophil aggregate formation at the vein wall were reduced in mice treated with high-dose DAPT or ibrutinib. In summary, VT initiation requires platelet activation via GPCRs and ITAM receptors. Strong inhibition of either signaling pathway reduces VT in mice.


Subject(s)
Thrombosis , Venous Thrombosis , Animals , Aspirin , Blood Platelets/metabolism , Clopidogrel/metabolism , Clopidogrel/pharmacology , GTP-Binding Proteins , Immunoreceptor Tyrosine-Based Activation Motif , Mice , Mice, Transgenic , Platelet Activation , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Thrombin/metabolism , Thrombosis/metabolism , Venous Thrombosis/metabolism
5.
Blood ; 139(9): 1374-1388, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34905618

ABSTRACT

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Subject(s)
Afibrinogenemia , Blood Platelets/metabolism , Fibrinogen , Hemostasis/genetics , Mutation , Platelet Aggregation/genetics , Thrombosis , Afibrinogenemia/genetics , Afibrinogenemia/metabolism , Animals , Fibrinogen/genetics , Fibrinogen/metabolism , Mice , Mice, Knockout , Thrombosis/genetics , Thrombosis/metabolism
6.
Am J Obstet Gynecol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710264

ABSTRACT

BACKGROUND: Postpartum hemorrhage is difficult to predict, is associated with significant maternal morbidity, and is the leading cause of maternal mortality worldwide. The identification of maternal biomarkers that can predict increased postpartum hemorrhage risk would enhance clinical care and may uncover mechanisms that lead to postpartum hemorrhage. OBJECTIVE: This retrospective case-control study employed agnostic proteomic profiling of maternal plasma samples to identify differentially abundant proteins in controls and postpartum hemorrhage cases. STUDY DESIGN: Maternal plasma samples were procured from a cohort of >60,000 participants in a single institution's perinatal repository. Postpartum hemorrhage was defined as a decrease in hematocrit of ≥10% or receipt of transfusion within 24 hours after delivery. Postpartum hemorrhage cases (n=30) were matched by maternal age and delivery mode (vaginal or cesarean) with controls (n=56). Mass spectrometry was used to identify differentially abundant proteins using integrated peptide peak areas. Statistically significant differences between groups were defined as P<.05 after controlling for multiple comparisons. RESULTS: By study design, cases and controls did not differ in race, ethnicity, gestational age at delivery, blood type, or predelivery platelet count. Cases had slightly but significantly lower predelivery and postdelivery hematocrit and hemoglobin. Mass spectrometry detected 1140 proteins, including 77 proteins for which relative abundance differed significantly between cases and controls (fold change >1.15, P<.05). Of these differentially abundant plasma proteins, most had likely liver or placental origins. Gene ontology term analysis mapped to protein clusters involved in responses to wound healing, stress response, and host immune defense. Significantly differentially abundant proteins with the highest fold change (prostaglandin D2 synthase, periostin, and several serine protease inhibitors) did not correlate with predelivery hematocrit or hemoglobin but identified postpartum hemorrhage cases with logistic regression modeling revealing good-to-excellent area under the operator receiver characteristic curves (0.802-0.874). Incorporating predelivery hemoglobin with these candidate proteins further improved the identification of postpartum hemorrhage cases. CONCLUSION: Agnostic analysis of maternal plasma samples identified differentially abundant proteins in controls and postpartum hemorrhage cases. Several of these proteins are known to participate in biologically plausible pathways for postpartum hemorrhage risk and have potential value for predicting postpartum hemorrhage. These findings identify candidate protein biomarkers for future validation and mechanistic studies.

7.
Arterioscler Thromb Vasc Biol ; 43(7): e254-e269, 2023 07.
Article in English | MEDLINE | ID: mdl-37128921

ABSTRACT

BACKGROUND: Antithrombin, PC (protein C), and PS (protein S) are circulating natural anticoagulant proteins that regulate hemostasis and of which partial deficiencies are causes of venous thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS were limited by modest sample sizes or by being restricted to candidate genes. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-analyzed across ancestries the results from 10 genome-wide association studies of plasma levels of antithrombin, PC, PS free, and PS total. METHODS: Study participants were of European and African ancestries, and genotype data were imputed to TOPMed, a dense multiancestry reference panel. Each of the 10 studies conducted a genome-wide association studies for each phenotype and summary results were meta-analyzed, stratified by ancestry. Analysis of antithrombin included 25 243 European ancestry and 2688 African ancestry participants, PC analysis included 16 597 European ancestry and 2688 African ancestry participants, PSF and PST analysis included 4113 and 6409 European ancestry participants. We also conducted transcriptome-wide association analyses and multiphenotype analysis to discover additional associations. Novel genome-wide association studies and transcriptome-wide association analyses findings were validated by in vitro functional experiments. Mendelian randomization was performed to assess the causal relationship between these proteins and cardiovascular outcomes. RESULTS: Genome-wide association studies meta-analyses identified 4 newly associated loci: 3 with antithrombin levels (GCKR, BAZ1B, and HP-TXNL4B) and 1 with PS levels (ORM1-ORM2). transcriptome-wide association analyses identified 3 newly associated genes: 1 with antithrombin level (FCGRT), 1 with PC (GOLM2), and 1 with PS (MYL7). In addition, we replicated 7 independent loci reported in previous studies. Functional experiments provided evidence for the involvement of GCKR, SNX17, and HP genes in antithrombin regulation. CONCLUSIONS: The use of larger sample sizes, diverse populations, and a denser imputation reference panel allowed the detection of 7 novel genomic loci associated with plasma antithrombin, PC, and PS levels.


Subject(s)
Protein C , Protein S , Protein C/genetics , Protein S/genetics , Genome-Wide Association Study , Antithrombins , Transcriptome , Anticoagulants , Antithrombin III/genetics , Polymorphism, Single Nucleotide
8.
Haemophilia ; 29(6): 1483-1489, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707428

ABSTRACT

INTRODUCTION AND AIM: Severe haemophilia B (HB) is characterized by spontaneous bleeding episodes, mostly into joints. Recurrent bleeds lead to progressive joint destruction called haemophilic arthropathy. The current concept of prophylaxis aims at maintaining the FIX level >3-5 IU/dL, which is effective at reducing the incidence of haemophilic arthropathy. Extended half-life FIX molecules make it easier to achieve these target trough levels compared to standard FIX concentrates. We previously reported that the fusion of a recombinant FIX (rFIX) to factor XIII-B (FXIIIB) subunit prolonged the half-life of the rFIX-LXa-FXIIIB fusion molecule in mice and rats 3.9- and 2.2-fold, respectively, compared with rFIX-WT. However, the mechanism behind the extended half-life was not known. MATERIALS AND METHODS: Mass spectrometry and ITC were used to study interactions of rFIX-LXa-FXIIIB with albumin. Pharmacokinetic analyses in fibrinogen-KO and FcRn-KO mice were performed to evaluate the effect of albumin and fibrinogen on in-vivo half-life of rFIX-LXa-FXIIIB. Finally saphenous vein bleeding model was used to assess in-vivo haemostatic activity of rFIX-LXa-FXIIIB. RESULTS AND CONCLUSION: We report here the key interactions that rFIX-LXa-FXIIIB may have in plasma are with fibrinogen and albumin which may mediate its prolonged half-life. In addition, using the saphenous vein bleeding model, we demonstrate that rFIX-FXIIIB elicits functional clot formation that is indistinguishable from that of rFIX-WT.


Subject(s)
Hemophilia B , Hemostatics , Joint Diseases , Vascular Diseases , Mice , Rats , Animals , Factor IX/genetics , Factor IX/pharmacology , Factor IX/therapeutic use , Factor XIII/pharmacology , Factor XIII/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/pharmacokinetics , Hemophilia B/drug therapy , Hemorrhage/prevention & control , Hemostatics/therapeutic use , Albumins , Fibrinogen/therapeutic use , Half-Life , Joint Diseases/drug therapy , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Recombinant Proteins/chemistry
9.
Arterioscler Thromb Vasc Biol ; 42(8): 931-941, 2022 08.
Article in English | MEDLINE | ID: mdl-35652333

ABSTRACT

As the third most common vascular disease, venous thromboembolism is associated with significant mortality and morbidity. Pathogenesis underlying venous thrombosis is still not fully understood. Accumulating data suggest fibrin network structure and factor XIII-mediated crosslinking are major determinants of venous thrombus mass, composition, and stability. Understanding the cellular and molecular mechanisms mediating fibrin(ogen) and factor XIII production and function and their ability to influence venous thrombosis and resolution may inspire new anticoagulant strategies that target these proteins to reduce or prevent venous thrombosis in certain at-risk patients. This article summarizes fibrinogen and factor XIII biology and current knowledge of their function during venous thromboembolism.


Subject(s)
Hemostatics , Thrombosis , Venous Thromboembolism , Venous Thrombosis , Blood Coagulation , Factor XIII/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Humans , Venous Thrombosis/metabolism
10.
Blood ; 135(19): 1704-1717, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32315384

ABSTRACT

Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.


Subject(s)
Diet, High-Fat/adverse effects , Fibrinolysin/metabolism , Obesity/pathology , Thrombin/metabolism , Thrombomodulin/metabolism , Thrombosis/pathology , Animals , Mice , Mice, Obese , Obesity/etiology , Obesity/metabolism , Thrombosis/etiology , Thrombosis/metabolism
11.
Blood ; 136(26): 3062-3069, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33367543

ABSTRACT

Fibrinogen is a key component of the coagulation cascade, and variation in its circulating levels may contribute to thrombotic diseases, such as venous thromboembolism (VTE) and ischemic stroke. Gamma prime (γ') fibrinogen is an isoform of fibrinogen that has anticoagulant properties. We applied 2-sample Mendelian randomization (MR) to estimate the causal effect of total circulating fibrinogen and its isoform, γ' fibrinogen, on risk of VTE and ischemic stroke subtypes using summary statistics from genome-wide association studies. Genetic instruments for γ' fibrinogen and total fibrinogen were selected, and the inverse-variance weighted MR approach was used to estimate causal effects in the main analysis, complemented by sensitivity analyses that are more robust to the inclusion of pleiotropic variants, including MR-Egger, weighted median MR, and weighted mode MR. The main inverse-variance weighted MR estimates based on a combination of 16 genetic instruments for γ' fibrinogen and 75 genetic instruments for total fibrinogen indicated a protective effect of higher γ' fibrinogen and higher total fibrinogen on VTE risk. There was also a protective effect of higher γ' fibrinogen levels on cardioembolic and large artery stroke risk. Effect estimates were consistent across sensitivity analyses. Our results provide evidence to support effects of genetically determined γ' fibrinogen on VTE and ischemic stroke risk. Further research is needed to explore mechanisms underlying these effects and their clinical applications.


Subject(s)
Fibrinogen , Genetic Variation , Ischemic Stroke , Mendelian Randomization Analysis , Venous Thromboembolism , Female , Fibrinogen/genetics , Fibrinogen/metabolism , Genome-Wide Association Study , Humans , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/genetics , Male , Risk Factors , Venous Thromboembolism/blood , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics
12.
Arterioscler Thromb Vasc Biol ; 41(1): 401-414, 2021 01.
Article in English | MEDLINE | ID: mdl-33196292

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is associated with derangement in biomarkers of coagulation and endothelial function and has been likened to the coagulopathy of sepsis. However, clinical laboratory metrics suggest key differences in these pathologies. We sought to determine whether plasma coagulation and fibrinolytic potential in patients with COVID-19 differ compared with healthy donors and critically ill patients with sepsis. Approach and Results: We performed comparative studies on plasmas from a single-center, cross-sectional observational study of 99 hospitalized patients (46 with COVID-19 and 53 with sepsis) and 18 healthy donors. We measured biomarkers of endogenous coagulation and fibrinolytic activity by immunoassays, thrombin, and plasmin generation potential by fluorescence and fibrin formation and lysis by turbidity. Compared with healthy donors, patients with COVID-19 or sepsis both had elevated fibrinogen, d-dimer, soluble TM (thrombomodulin), and plasmin-antiplasmin complexes. Patients with COVID-19 had increased thrombin generation potential despite prophylactic anticoagulation, whereas patients with sepsis did not. Plasma from patients with COVID-19 also had increased endogenous plasmin potential, whereas patients with sepsis showed delayed plasmin generation. The collective perturbations in plasma thrombin and plasmin generation permitted enhanced fibrin formation in both COVID-19 and sepsis. Unexpectedly, the lag times to thrombin, plasmin, and fibrin formation were prolonged with increased disease severity in COVID-19, suggesting a loss of coagulation-initiating mechanisms accompanies severe COVID-19. CONCLUSIONS: Both COVID-19 and sepsis are associated with endogenous activation of coagulation and fibrinolysis, but these diseases differently impact plasma procoagulant and fibrinolytic potential. Dysregulation of procoagulant and fibrinolytic pathways may uniquely contribute to the pathophysiology of COVID-19 and sepsis.


Subject(s)
Blood Coagulation Disorders/blood , Blood Coagulation/physiology , COVID-19/blood , SARS-CoV-2 , Sepsis/blood , Biomarkers/blood , Blood Coagulation Disorders/etiology , COVID-19/complications , COVID-19/epidemiology , Cross-Sectional Studies , Female , Fibrinolysin/metabolism , Humans , Male , Middle Aged , Pandemics , Sepsis/complications
13.
Circulation ; 142(6): e85-e94, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32776842

ABSTRACT

Venous thromboembolism is a major cause of morbidity and mortality. The impact of the US Surgeon General's The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism in 2008 has been lower than expected given the public health impact of this disease. This scientific statement highlights future research priorities in venous thromboembolism, developed by experts and a crowdsourcing survey across 16 scientific organizations. At the fundamental research level (T0), researchers need to identify pathobiological causative mechanisms for the 50% of patients with unprovoked venous thromboembolism and to better understand mechanisms that differentiate hemostasis from thrombosis. At the human level (T1), new methods for diagnosing, treating, and preventing venous thromboembolism will allow tailoring of diagnostic and therapeutic approaches to individuals. At the patient level (T2), research efforts are required to understand how foundational evidence impacts care of patients (eg, biomarkers). New treatments, such as catheter-based therapies, require further testing to identify which patients are most likely to experience benefit. At the practice level (T3), translating evidence into practice remains challenging. Areas of overuse and underuse will require evidence-based tools to improve care delivery. At the community and population level (T4), public awareness campaigns need thorough impact assessment. Large population-based cohort studies can elucidate the biological and environmental underpinnings of venous thromboembolism and its complications. To achieve these goals, funding agencies and training programs must support a new generation of scientists and clinicians who work in multidisciplinary teams to solve the pressing public health problem of venous thromboembolism.


Subject(s)
Hemostasis/physiology , Thrombosis/diagnosis , Venous Thromboembolism/diagnosis , American Heart Association , Biomarkers , Evidence-Based Medicine , Expert Testimony , Humans , Practice Guidelines as Topic , Research , Translational Research, Biomedical , United States , Venous Thromboembolism/therapy
14.
Blood ; 133(23): 2529-2541, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30952675

ABSTRACT

Sickle cell disease (SCD) is associated with chronic activation of coagulation and an increased risk of venous thromboembolism. Erythrocyte sickling, the primary pathologic event in SCD, results in dramatic morphological changes in red blood cells (RBCs) because of polymerization of the abnormal hemoglobin. We used a mouse model of SCD and blood samples from sickle patients to determine if these changes affect the structure, properties, and dynamics of sickle clot formation. Sickling of RBCs and a significant increase in fibrin deposition were observed in venous thrombi formed in sickle mice. During ex vivo clot contraction, the number of RBCs extruded from sickle whole blood clots was significantly reduced compared with the number released from sickle cell trait and nonsickle clots in both mice and humans. Entrapment of sickled RBCs was largely factor XIIIa-independent and entirely mediated by the platelet-free cellular fraction of sickle blood. Inhibition of phosphatidylserine, but not administration of antisickling compounds, increased the number of RBCs released from sickle clots. Interestingly, whole blood, but not plasma clots from SCD patients, was more resistant to fibrinolysis, indicating that the cellular fraction of blood mediates resistance to tissue plasminogen activator. Sickle trait whole blood clots demonstrated an intermediate phenotype in response to tissue plasminogen activator. RBC exchange in SCD patients had a long-lasting effect on normalizing whole blood clot contraction. Furthermore, RBC exchange transiently reversed resistance of whole blood sickle clots to fibrinolysis, in part by decreasing platelet-derived PAI-1. These properties of sickle clots may explain the increased risk of venous thromboembolism observed in SCD.


Subject(s)
Anemia, Sickle Cell/complications , Anemia, Sickle Cell/pathology , Erythrocytes, Abnormal/pathology , Thrombosis/pathology , Venous Thrombosis/pathology , Anemia, Sickle Cell/blood , Animals , Erythrocytes/pathology , Humans , Mice , Thrombosis/blood , Venous Thrombosis/blood , Venous Thrombosis/etiology
15.
Am J Obstet Gynecol ; 225(1): 85.e1-85.e11, 2021 07.
Article in English | MEDLINE | ID: mdl-33248975

ABSTRACT

BACKGROUND: Every 2 minutes, there is a pregnancy-related death worldwide, with one-third caused by severe postpartum hemorrhage. Although international trials demonstrated the efficacy of 1000 mg tranexamic acid in treating postpartum hemorrhage, to the best of our knowledge, there are no dose-finding studies of tranexamic acid on pregnant women for postpartum hemorrhage prevention. OBJECTIVE: This study aimed to determine the optimal tranexamic acid dose needed to prevent postpartum hemorrhage. STUDY DESIGN: We enrolled 30 pregnant women undergoing scheduled cesarean delivery in an open-label, dose ranging study. Subjects were divided into 3 cohorts receiving 5, 10, or 15 mg/kg (maximum, 1000 mg) of intravenous tranexamic acid at umbilical cord clamping. The inclusion criteria were ≥34 week's gestation and normal renal function. The primary endpoints were pharmacokinetic and pharmacodynamic profiles. Tranexamic acid plasma concentration of >10 µg/mL and maximum lysis of <17% were defined as therapeutic targets independent to the current study. Rotational thromboelastometry of tissue plasminogen activator-spiked samples was used to evaluate pharmacodynamic profiles at time points up to 24 hours after tranexamic acid administration. Safety was assessed by plasma thrombin generation, D-dimer, and tranexamic acid concentrations in breast milk. RESULTS: There were no serious adverse events including venous thromboembolism. Plasma concentrations of tranexamic acid increased in a dose-proportional manner. The lowest dose cohort received an average of 448±87 mg tranexamic acid. Plasma tranexamic acid exceeded 10 µg/mL and maximum lysis was <17% at >1 hour after administration for all tranexamic acid doses tested. Median estimated blood loss for cohorts receiving 5, 10, or 15 mg/kg tranexamic acid was 750, 750, and 700 mL, respectively. Plasma thrombin generation did not increase with higher tranexamic acid concentrations. D-dimer changes from baseline were not different among the cohorts. Breast milk tranexamic acid concentrations were 1% or less than maternal plasma concentrations. CONCLUSION: Although large randomized trials are necessary to support the clinical efficacy of tranexamic acid for prophylaxis, we propose an optimal dose of 600 mg in future tranexamic acid efficacy studies to prevent postpartum hemorrhage.


Subject(s)
Postpartum Hemorrhage/prevention & control , Tranexamic Acid/administration & dosage , Adult , Cesarean Section , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/analysis , Gestational Age , Humans , Milk, Human/chemistry , Pregnancy , Thrombelastography , Tranexamic Acid/adverse effects , Tranexamic Acid/pharmacokinetics , Treatment Outcome , Young Adult
16.
Br J Clin Pharmacol ; 87(9): 3531-3541, 2021 09.
Article in English | MEDLINE | ID: mdl-33576009

ABSTRACT

AIMS: The population pharmacokinetics (PK) and pharmacodynamics (PD) of tranexamic acid (TXA) have not been studied to prevent postpartum haemorrhage (PPH) in pregnant women. It is unclear which TXA dose assures sufficient PPH prevention. This study investigated population PK/PD of TXA in pregnant women who underwent caesarean delivery to determine the optimal prophylactic doses of TXA for future studies. METHODS: We analysed concentration (PK) and maximum lysis (PD) data from 30 pregnant women scheduled for caesarean delivery who received 5, 10 or 15 mg/kg of TXA intravenously using population approach. RESULTS: TXA PK was best described by a two-compartment model with first-order elimination and the following parameters: clearance (between-subject variability) of 9.4 L/h (27.7%), central volume of 10.1 L (47.4%), intercompartmental clearance of 22.4 L/h (66.7%), peripheral volume of 14.0 L (13.1%) and additive error of 1.4 mg/L. The relationship between TXA concentration and maximum lysis was characterized by a sigmoid Emax model with baseline lysis of 97%, maximum inhibition of 89%, IC50 of 6.0 mg/L (65.3%), hill factor of 8.5 (86.3%) and additive error of 7.3%. Simulations demonstrated that 500 and 650 mg of TXA maintained therapeutic targets for 30 minutes and 1 hour, respectively, in 90% of patients. CONCLUSION: This is the first population PK and PD study of TXA in pregnant women undergoing caesarean delivery. Our analysis suggests that a 650 mg dose provides adequate PPH prophylaxis up to 1 hour, which is less than the currently used 1000 mg of TXA in pregnant women.


Subject(s)
Antifibrinolytic Agents , Postpartum Hemorrhage , Tranexamic Acid , Cesarean Section , Female , Humans , Postpartum Hemorrhage/drug therapy , Postpartum Hemorrhage/prevention & control , Pregnancy
17.
Arterioscler Thromb Vasc Biol ; 40(9): 2033-2044, 2020 09.
Article in English | MEDLINE | ID: mdl-32657623

ABSTRACT

The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system characterized by elevated plasma levels of d-dimer-a biomarker of fibrin degradation. Importantly, high levels of D-dimer on hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways may reduce thrombosis and improve lung function in COVID-19 patients.


Subject(s)
Betacoronavirus , Blood Coagulation Disorders/complications , Blood Coagulation , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Thrombosis/etiology , Blood Coagulation Disorders/blood , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Thrombosis/blood
18.
Arterioscler Thromb Vasc Biol ; 40(4): 929-942, 2020 04.
Article in English | MEDLINE | ID: mdl-32102567

ABSTRACT

OBJECTIVE: The lymphatic system is a circulatory system that unidirectionally drains the interstitial tissue fluid back to blood circulation. Although lymph is utilized by leukocytes for immune surveillance, it remains inaccessible to platelets and erythrocytes. Activated cells release submicron extracellular vesicles (EV) that transport molecules from the donor cell. In rheumatoid arthritis, EV accumulate in the joint where they can interact with numerous cellular lineages. However, whether EV can exit the inflamed tissue to recirculate is unknown. Here, we investigated whether vascular leakage that occurs during inflammation could favor EV access to the lymphatic system. Approach and Results: Using an in vivo model of autoimmune inflammatory arthritis, we show that there is an influx of platelet EV, but not EV from erythrocytes or leukocytes, in joint-draining lymph. In contrast to blood platelet EV, lymph platelet EV lacked mitochondrial organelles and failed to promote coagulation. Platelet EV influx in lymph was consistent with joint vascular leakage and implicated the fibrinogen receptor α2bß3 and platelet-derived serotonin. CONCLUSIONS: These findings show that platelets can disseminate their EV in fluid that is inaccessible to platelets and beyond the joint in this disease.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Blood Platelets/physiology , Extracellular Vesicles/physiology , Lymph/physiology , Animals , Blood Platelets/metabolism , Capillary Permeability , Disease Models, Animal , Mice, Inbred C57BL , Serotonin/metabolism
19.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803235

ABSTRACT

Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.


Subject(s)
Blood Chemical Analysis/methods , Disease , Fibrinolysin/analysis , Fibrinolysin/metabolism , Animals , Antifibrinolytic Agents/blood , Fibrin/analysis , Fibrin/chemistry , Fibrinolytic Agents/blood , Humans , Plasminogen/analysis , Plasminogen/chemistry , Plasminogen/metabolism
20.
J Biol Chem ; 294(2): 390-396, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30409906

ABSTRACT

In cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), the amyloid ß (Aß) peptide deposits along the vascular lumen, leading to degeneration and dysfunction of surrounding tissues. Activated coagulation factor XIIIa (FXIIIa) covalently cross-links proteins in blood and vasculature, such as in blood clots and on the extracellular matrix. Although FXIIIa co-localizes with Aß in CAA, the ability of FXIIIa to cross-link Aß has not been demonstrated. Using Western blotting, kinetic assays, and microfluidic analyses, we show that FXIIIa covalently cross-links Aß40 into dimers and oligomers (kcat/Km = 1.5 × 105 m-1s-1), as well as to fibrin, platelet proteins, and blood clots under flow in vitro Aß40 also increased the stiffness of platelet-rich plasma clots in the presence of FXIIIa. These results suggest that FXIIIa-mediated cross-linking may contribute to the formation of Aß deposits in CAA and Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood Proteins/metabolism , Cerebral Amyloid Angiopathy/metabolism , Factor XIIIa/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/analysis , Blood Platelets/metabolism , Blood Platelets/pathology , Blood Proteins/analysis , Cerebral Amyloid Angiopathy/pathology , Factor XIIIa/analysis , Fibrin/analysis , Fibrin/metabolism , Humans , Peptide Fragments/analysis , Platelet-Rich Plasma/metabolism , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL