Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell ; 184(11): 2927-2938.e11, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34010620

ABSTRACT

Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, spike (S). Here, we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using coronavirus disease 2019 (COVID-19) convalescent plasma. Antibody binding was common in two regions, the fusion peptide and the linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Algorithms , COVID-19/therapy , COVID-19/virology , Cell Line , Gene Library , Humans , Immunization, Passive , Mutation , Protein Domains , SARS-CoV-2/genetics , Software , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
2.
J Infect Dis ; 229(2): 422-431, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37531658

ABSTRACT

BACKGROUND: The epidemiology of respiratory viral infections is complex. How infection with one respiratory virus affects risk of subsequent infection with the same or another respiratory virus is not well described. METHODS: From October 2019 to June 2021, enrolled households completed active surveillance for acute respiratory illness (ARI), and participants with ARI self-collected nasal swab specimens; after April 2020, participants with ARI or laboratory-confirmed severe acute respiratory syndrome coronavirus 2 and their household members self-collected nasal swab specimens. Specimens were tested using multiplex reverse-transcription polymerase chain reaction for respiratory viruses. A Cox regression model with a time-dependent covariate examined risk of subsequent detections following a specific primary viral detection. RESULTS: Rhinovirus was the most frequently detected pathogen in study specimens (406 [9.5%]). Among 51 participants with multiple viral detections, rhinovirus to seasonal coronavirus (8 [14.8%]) was the most common viral detection pairing. Relative to no primary detection, there was a 1.03-2.06-fold increase in risk of subsequent virus detection in the 90 days after primary detection; risk varied by primary virus: human parainfluenza virus, rhinovirus, and respiratory syncytial virus were statistically significant. CONCLUSIONS: Primary virus detection was associated with higher risk of subsequent virus detection within the first 90 days after primary detection.


Subject(s)
Enterovirus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Infant , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Washington/epidemiology , Viruses/genetics , Rhinovirus/genetics
3.
J Infect Dis ; 230(2): 363-373, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38531685

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5757 participants reported 17 572 Ag-RDT results and completed 12 674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR positive. Overall sensitivity and specificity were 53.0% (95% confidence interval [CI], 49.6%-56.4%) and 98.8% (95% CI, 98.5%-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4-7 days after symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSIONS: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high risk for SARS-CoV-2 infection.


Subject(s)
COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Humans , COVID-19/diagnosis , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Prospective Studies , Longitudinal Studies , Male , Female , Middle Aged , Adult , COVID-19 Serological Testing/methods , Antigens, Viral/analysis , COVID-19 Nucleic Acid Testing/methods , Aged , Washington , Young Adult , Adolescent
4.
Epidemiol Infect ; 151: e129, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37424310

ABSTRACT

Homeless shelter residents and staff may be at higher risk of SARS-CoV-2 infection. However, SARS-CoV-2 infection estimates in this population have been reliant on cross-sectional or outbreak investigation data. We conducted routine surveillance and outbreak testing in 23 homeless shelters in King County, Washington, to estimate the occurrence of laboratory-confirmed SARS-CoV-2 infection and risk factors during 1 January 2020-31 May 2021. Symptom surveys and nasal swabs were collected for SARS-CoV-2 testing by RT-PCR for residents aged ≥3 months and staff. We collected 12,915 specimens from 2,930 unique participants. We identified 4.74 (95% CI 4.00-5.58) SARS-CoV-2 infections per 100 individuals (residents: 4.96, 95% CI 4.12-5.91; staff: 3.86, 95% CI 2.43-5.79). Most infections were asymptomatic at the time of detection (74%) and detected during routine surveillance (73%). Outbreak testing yielded higher test positivity than routine surveillance (2.7% versus 0.9%). Among those infected, residents were less likely to report symptoms than staff. Participants who were vaccinated against seasonal influenza and were current smokers had lower odds of having an infection detected. Active surveillance that includes SARS-CoV-2 testing of all persons is essential in ascertaining the true burden of SARS-CoV-2 infections among residents and staff of congregate settings.


Subject(s)
COVID-19 , Ill-Housed Persons , Humans , COVID-19/epidemiology , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Washington/epidemiology , Incidence , Cross-Sectional Studies , Watchful Waiting
5.
Dig Dis Sci ; 68(8): 3383-3389, 2023 08.
Article in English | MEDLINE | ID: mdl-37269371

ABSTRACT

BACKGROUND: Gastrointestinal (GI) symptoms are recognized sequelae of acute respiratory illness (ARI), but their prevalence is not well documented. Our study aim was to assess the incidence of GI symptoms in community ARI cases for persons of all ages and their association with clinical outcomes. METHODS: We collected mid-nasal swabs, clinical, and symptom data from Seattle-area individuals during the 2018-2019 winter season as part of a large-scale prospective community surveillance study. Swabs were tested by polymerase chain reaction (PCR) for 26 respiratory pathogens. Likelihood of GI symptoms given demographic, clinical, and microbiological covariates were analyzed with Fisher's exact, Wilcoxon-rank-sum, and t-tests and multivariable logistic regression. RESULTS: In 3183 ARI episodes, 29.4% had GI symptoms (n = 937). GI symptoms were significantly associated with pathogen detection, illness interfering with daily life, seeking care for the illness, and greater symptom burden (all p < 0.05). Controlling for age, > 3 symptoms, and month, influenza (p < 0.001), human metapneumovirus (p = 0.004), and enterovirus D68 (p = 0.05) were significantly more likely to be associated with GI symptoms than episodes with no pathogen detected. Seasonal coronaviruses (p = 0.005) and rhinovirus (p = 0.04) were significantly less likely to be associated with GI symptoms. CONCLUSION: In this community-surveillance study of ARI, GI symptoms were common and associated with illness severity and respiratory pathogen detection. GI symptoms did not track with known GI tropism, suggesting GI symptoms may be nonspecific rather than pathogen-mediated. Patients presenting with GI and respiratory symptoms should have respiratory virus testing, even if the respiratory symptom is not the primary concern.


Subject(s)
Gastrointestinal Diseases , Respiratory Tract Infections , Virus Diseases , Humans , Infant , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Prospective Studies , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Nausea , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/epidemiology , Diarrhea/diagnosis , Diarrhea/epidemiology , Vomiting
6.
J Infect Dis ; 226(Suppl 3): S304-S314, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35749582

ABSTRACT

BACKGROUND: Rhinovirus (RV) is a common cause of respiratory illness in all people, including those experiencing homelessness. RV epidemiology in homeless shelters is unknown. METHODS: We analyzed data from a cross-sectional homeless shelter study in King County, Washington, October 2019-May 2021. Shelter residents or guardians aged ≥3 months reporting acute respiratory illness completed questionnaires and submitted nasal swabs. After 1 April 2020, enrollment expanded to residents and staff regardless of symptoms. Samples were tested by multiplex RT-PCR for respiratory viruses. A subset of RV-positive samples was sequenced. RESULTS: There were 1066 RV-positive samples with RV present every month of the study period. RV was the most common virus before and during the coronavirus disease 2019 (COVID-19) pandemic (43% and 77% of virus-positive samples, respectively). Participants from family shelters had the highest prevalence of RV. Among 131 sequenced samples, 33 RV serotypes were identified with each serotype detected for ≤4 months. CONCLUSIONS: RV infections persisted through community mitigation measures and were most prevalent in shelters housing families. Sequencing showed a diversity of circulating RV serotypes, each detected over short periods of time. Community-based surveillance in congregate settings is important to characterize respiratory viral infections during and after the COVID-19 pandemic. CLINICAL TRIALS REGISTRATION: NCT04141917.


Subject(s)
COVID-19 , Enterovirus Infections , Ill-Housed Persons , Viruses , COVID-19/epidemiology , Cross-Sectional Studies , Enterovirus Infections/epidemiology , Genomics , Humans , Pandemics , Rhinovirus/genetics , Washington/epidemiology
7.
J Infect Dis ; 223(2): 197-205, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33535236

ABSTRACT

Most individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop neutralizing antibodies that target the viral spike protein. In this study, we quantified how levels of these antibodies change in the months after SARS-CoV-2 infection by examining longitudinal samples collected approximately 30-152 days after symptom onset from a prospective cohort of 32 recovered individuals with asymptomatic, mild, or moderate-severe disease. Neutralizing antibody titers declined an average of about 4-fold from 1 to 4 months after symptom onset. This decline in neutralizing antibody titers was accompanied by a decline in total antibodies capable of binding the viral spike protein or its receptor-binding domain. Importantly, our data are consistent with the expected early immune response to viral infection, where an initial peak in antibody levels is followed by a decline to a lower plateau. Additional studies of long-lived B cells and antibody titers over longer time frames are necessary to determine the durability of immunity to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
8.
Clin Infect Dis ; 73(5): 802-807, 2021 09 07.
Article in English | MEDLINE | ID: mdl-33590002

ABSTRACT

BACKGROUND: Although multiple respiratory viruses circulate in humans, few studies have compared the incidence of different viruses across the life course. We estimated the incidence of outpatient illness due to 12 different viruses during November 2018 through April 2019 in a fully enumerated population. METHODS: We conducted active surveillance for ambulatory care visits for acute respiratory illness (ARI) among members of Kaiser Permanente Washington (KPWA). Enrolled patients provided respiratory swab specimens which were tested for 12 respiratory viruses using reverse transcription polymerase chain reaction (RT-PCR). We estimated the cumulative incidence of infection due to each virus overall and by age group. RESULTS: The KPWA population under surveillance included 202 562 individuals, of whom 2767 (1.4%) were enrolled in the study. Influenza A(H3N2) was the most commonly detected virus, with an overall incidence of 21 medically attended illnesses per 1000 population; the next most common viruses were influenza A(H1N1) (18 per 1000), coronaviruses (13 per 1000), respiratory syncytial virus (RSV, 13 per 1000), and rhinovirus (9 per 1000). RSV was the most common cause of medically attended ARI among children aged 1-4 years; coronaviruses were the most common among adults aged ≥65 years. CONCLUSIONS: Consistent with other studies focused on single viruses, we found that influenza and RSV were major causes of acute respiratory illness in persons of all ages. In comparison, coronaviruses and rhinovirus were also important pathogens. Prior to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronaviruses were the second-most common cause of medically attended ARI during the 2018/19 influenza season.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Adult , Child , Humans , Incidence , Infant , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Seasons
9.
Clin Infect Dis ; 73(11): e4411-e4418, 2021 12 06.
Article in English | MEDLINE | ID: mdl-33197930

ABSTRACT

BACKGROUND: Noninfluenza respiratory viruses are responsible for a substantial burden of disease in the United States. Household transmission is thought to contribute significantly to subsequent transmission through the broader community. In the context of the coronavirus disease 2019 (COVID-19) pandemic, contactless surveillance methods are of particular importance. METHODS: From November 2019 to April 2020, 303 households in the Seattle area were remotely monitored in a prospective longitudinal study for symptoms of respiratory viral illness. Enrolled participants reported weekly symptoms and submitted respiratory samples by mail in the event of an acute respiratory illness (ARI). Specimens were tested for 14 viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using reverse-transcription polymerase chain reaction. Participants completed all study procedures at home without physical contact with research staff. RESULTS: In total, 1171 unique participants in 303 households were monitored for ARI. Of participating households, 128 (42%) included a child aged <5 years and 202 (67%) included a child aged 5-12 years. Of the 678 swabs collected during the surveillance period, 237 (35%) tested positive for 1 or more noninfluenza respiratory viruses. Rhinovirus, common human coronaviruses, and respiratory syncytial virus were the most common. Four cases of SARS-CoV-2 were detected in 3 households. CONCLUSIONS: This study highlights the circulation of respiratory viruses within households during the winter months during the emergence of the SARS-CoV-2 pandemic. Contactless methods of recruitment, enrollment, and sample collection were utilized throughout this study and demonstrate the feasibility of home-based, remote monitoring for respiratory infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Longitudinal Studies , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
10.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34286830

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling
12.
BMJ Open ; 14(6): e081837, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834321

ABSTRACT

OBJECTIVE: We aimed to evaluate the feasibility and utility of an unsupervised testing mechanism, in which participants pick up a swab kit, self-test (unsupervised) and return the kit to an on-campus drop box, as compared with supervised self-testing at staffed locations. DESIGN: University SARS-CoV-2 testing cohort. SETTING: Husky Coronavirus Testing provided voluntary SARS-CoV-2 testing at a university in Seattle, USA. OUTCOME MEASURES: We computed descriptive statistics to describe the characteristics of the study sample. Adjusted logistic regression implemented via generalised estimating equations was used to estimate the odds of a self-swab being conducted through unsupervised versus supervised testing mechanisms by participant characteristics, including year of study enrolment, pre-Omicron versus post-Omicron time period, age, sex, race, ethnicity, affiliation and symptom status. RESULTS: From September 2021 to July 2022, we received 92 499 supervised and 26 800 unsupervised self-swabs. Among swabs received by the laboratory, the overall error rate for supervised versus unsupervised swabs was 0.3% vs 4%, although this declined to 2% for unsupervised swabs by the spring of the academic year. Results were returned for 92 407 supervised (5% positive) and 25 836 unsupervised (4%) swabs from 26 359 participants. The majority were students (79%), 61% were female and most identified as white (49%) or Asian (34%). The use of unsupervised testing increased during the Omicron wave when testing demand was high and stayed constant in spring 2022 even when testing demand fell. We estimated the odds of using unsupervised versus supervised testing to be significantly greater among those <25 years of age (p<0.001), for Hispanic versus non-Hispanic individuals (OR 1.2, 95% CI 1.0 to 1.3, p=0.01) and lower among individuals symptomatic versus asymptomatic or presymptomatic (0.9, 95% CI 0.8 to 0.9, p<0.001). CONCLUSIONS: Unsupervised swab collection permitted increased testing when demand was high, allowed for access to a broader proportion of the university community and was not associated with a substantial increase in testing errors.


Subject(s)
COVID-19 Testing , COVID-19 , SARS-CoV-2 , Specimen Handling , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Female , Male , Adult , Universities , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Middle Aged , Young Adult , Specimen Handling/methods , Cohort Studies , Washington/epidemiology , Self-Testing , Adolescent , Aged , Pandemics , Feasibility Studies
13.
Vaccine ; 42(6): 1332-1341, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307746

ABSTRACT

Vaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE. Analyses included 2,218 test-positive cases (59 % received monovalent booster dose) and 9,615 test-negative controls (62 %) from 9,066 individuals, with median age of 21 years, mostly students (71 %), White (56 %) or Asian (28 %), and with few comorbidities (3 %). More cases (23 %) than controls (6 %) had COVID-19-like illness. Estimated adjusted relative VE of primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection was 40 % (95 % CI: 33-47 %) during the overall analysis period and 46 % (39-52 %) during the period of Omicron circulation. Relative VE was greater for those without versus those with prior SARS-CoV-2 infection (41 %, 34-48 % versus 33 %, 9 %-52 %, P < 0.001). Relative VE was also greater in the six months after receiving a booster dose (41 %, 33-47 %) compared to more than six months (27 %, 8-42 %), but this difference was not statistically significant (P = 0.06). In this relatively young and healthy adult population, an mRNA monovalent booster dose provided increased protection against symptomatic SARS-CoV-2 infection, overall and with the Omicron variant. University testing programs may be utilized for estimating VE in healthy young adults, a population that is not well-represented by routine VE studies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Young Adult , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Universities , SARS-CoV-2 , RNA, Messenger
14.
Front Public Health ; 11: 1090148, 2023.
Article in English | MEDLINE | ID: mdl-37408748

ABSTRACT

Objective: Multifarious barriers to accessing healthcare services among people experiencing homelessness (PEH) lead to delays in seeking care for acute infections, including those caused by respiratory viruses. PEH are at high risk of acute respiratory illness (ARI)-related complications, especially in shelter settings that may facilitate virus spread, yet data characterizing healthcare utilization for ARI episodes among sheltered PEH remained limited. Methods: We conducted a cross-sectional study of viral respiratory infection among adult residents at two homeless shelters in Seattle, Washington between January and May 2019. We assessed factors associated with seeking medical care for ARI via self-report. We collected illness questionnaires and nasal swabs were tested for respiratory viruses by reverse transcription quantitative real-time PCR (RT-qPCR). Results: We observed 825 encounters from 649 unique participants; 241 (29.2%) encounters reported seeking healthcare for their ARI episode. Seasonal influenza vaccine receipt (adjusted prevalence ratio [aPR] 1.39, 95% CI 1.02-1.88), having health insurance (aPR 2.77, 95% CI 1.27-6.02), chronic lung conditions (aPR 1.55, 95% CI 1.12-2.15), and experiencing influenza-like-illness symptoms (aPR 1.63, 95% CI 1.20 - 2.20) were associated with increased likelihood of seeking care. Smoking (aPR 0.65, 95% CI 0.45-0.92) was associated with decreased likelihood of seeking care. Discussion: Findings suggest that care seeking for viral respiratory illness among PEH may be supported by prior engagement with primary healthcare services. Strategies to increase healthcare utilization may lead to earlier detection of respiratory viruses.


Subject(s)
Ill-Housed Persons , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Adult , Respiratory Tract Infections/epidemiology , Cross-Sectional Studies , Washington/epidemiology , Patient Acceptance of Health Care
15.
Influenza Other Respir Viruses ; 17(1): e13092, 2023 01.
Article in English | MEDLINE | ID: mdl-36610058

ABSTRACT

BACKGROUND: Persons experiencing homelessness face increased risk of influenza as overcrowding in congregate shelters can facilitate influenza virus spread. Data regarding on-site influenza testing and antiviral treatment within homeless shelters remain limited. METHODS: We conducted a cluster-randomized stepped-wedge trial of point-of-care molecular influenza testing coupled with antiviral treatment with baloxavir or oseltamivir in residents of 14 homeless shelters in Seattle, WA, USA. Residents ≥3 months with cough or ≥2 acute respiratory illness (ARI) symptoms and onset <7 days were eligible. In control periods, mid-nasal swabs were tested for influenza by reverse transcription polymerase chain reaction (RT-PCR). The intervention period included on-site rapid molecular influenza testing and antiviral treatment for influenza-positives if symptom onset was <48 h. The primary endpoint was monthly influenza virus infections in the control versus intervention periods. Influenza whole genome sequencing was performed to assess transmission and antiviral resistance. RESULTS: During 11/15/2019-4/30/2020 and 11/2/2020-4/30/2021, 1283 ARI encounters from 668 participants were observed. Influenza virus was detected in 51 (4%) specimens using RT-PCR (A = 14; B = 37); 21 influenza virus infections were detected from 269 (8%) intervention-eligible encounters by rapid molecular testing and received antiviral treatment. Thirty-seven percent of ARI-participant encounters reported symptom onset < 48 h. The intervention had no effect on influenza virus transmission (adjusted relative risk 1.73, 95% confidence interval [CI] 0.50-6.00). Of 23 influenza genomes, 86% of A(H1N1)pdm09 and 81% of B/Victoria sequences were closely related. CONCLUSION: Our findings suggest feasibility of influenza test-and-treat strategies in shelters. Additional studies would help discern an intervention effect during periods of increased influenza activity.


Subject(s)
Ill-Housed Persons , Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Oseltamivir/therapeutic use , Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy
16.
Influenza Other Respir Viruses ; 17(6): e13166, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37346095

ABSTRACT

Respiratory syncytial virus (RSV) causes disproportionate morbidity and mortality in vulnerable populations. We tested residents of homeless shelters in Seattle, Washington for RSV in a repeated cross-sectional study as part of community surveillance for respiratory viruses. Of 15 364 specimens tested, 35 had RSV detected, compared to 77 with influenza. The most common symptoms for both RSV and influenza were cough and rhinorrhea. Many individuals with RSV (39%) and influenza (58%) reported that their illness significantly impacted their ability to perform their regular activities. RSV and influenza demonstrated similar clinical presentations and burden of illness in vulnerable populations living in congregate settings.


Subject(s)
Ill-Housed Persons , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Washington/epidemiology , Cross-Sectional Studies
17.
BMJ Open ; 13(7): e071446, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37451722

ABSTRACT

INTRODUCTION: Although SARS-CoV-2 vaccines were first approved under Emergency Use Authorization by the Food and Drug Administration in late 2020 for adults, authorisation for young children 6 months to <5 years of age did not occur until 2022. These authorisations were based on clinical trials, understanding real-world vaccine effectiveness (VE) in the setting of emerging variants is critical. The primary goal of this study is to evaluate SARS-CoV-2 VE against infection among children aged >6 months and adults aged <50 years. METHODS: CASCADIA is a 4-year community-based prospective study of SARS-CoV-2 VE among 3500 adults and paediatric populations aged 6 months to 49 years in Oregon and Washington, USA. At enrolment and regular intervals, participants complete a sociodemographic questionnaire. Individuals provide a blood sample at enrolment and annually thereafter, with optional blood draws every 6 months and after infection and vaccination. Participants complete weekly self-collection of anterior nasal swabs and symptom questionnaires. Swabs are tested for SARS-CoV-2 and other respiratory pathogens by reverse transcription-PCR, with results of selected pathogens returned to participants; nasal swabs with SARS-CoV-2 detected will undergo whole genome sequencing. Participants who test positive for SARS-CoV-2 undergo serial swab collection every 3 days for 21 days. Serum samples are tested for SARS-CoV-2 antibody by binding and neutralisation assays. ANALYSIS: The primary outcome is SARS-CoV-2 infection. Cox regression models will be used to estimate the incidence rate ratio associated with SARS-CoV-2 vaccination among the paediatric and adult population, controlling for demographic factors and other potential confounders. ETHICS AND DISSEMINATION: All study materials including the protocol, consent forms, data collection instruments, participant communication and recruitment materials, were approved by the Kaiser Permanente Interregional Institutional Review Board, the IRB of record for the study. Results will be disseminated through peer-reviewed publications, presentations, participant newsletters and appropriate general news media.


Subject(s)
COVID-19 , United States , Adult , Humans , Child , Child, Preschool , Infant , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Prospective Studies , Vaccine Efficacy , Internet
18.
J Immunol Methods ; 510: 113328, 2022 11.
Article in English | MEDLINE | ID: mdl-35934070

ABSTRACT

Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.


Subject(s)
COVID-19 , Monocytes , Antibodies, Monoclonal , Antigen-Antibody Complex , Antigens , Cytokines , Humans , Immunoglobulin Fc Fragments , Phagocytosis , SARS-CoV-2
19.
Lancet Reg Health Am ; 15: 100348, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35996440

ABSTRACT

Background: The circulation of respiratory viruses poses a significant health risk among those residing in congregate settings. Data are limited on seasonal human coronavirus (HCoV) infections in homeless shelter settings. Methods: We analysed data from a clinical trial and SARS-CoV-2 surveillance study at 23 homeless shelter sites in King County, Washington between October 2019-May 2021. Eligible participants were shelter residents aged ≥3 months with acute respiratory illness. We collected enrolment data and nasal samples for respiratory virus testing using multiplex RT-PCR platform including HCoV. Beginning April 1, 2020, eligibility expanded to shelter residents and staff regardless of symptoms. HCoV species was determined by RT-PCR with species-specific primers, OpenArray assay or genomic sequencing for samples with an OpenArray relative cycle threshold <22. Findings: Of the 14,464 samples from 3281 participants between October 2019-May 2021, 107 were positive for HCoV from 90 participants (median age 40 years, range: 0·9-81 years, 38% female). HCoV-HKU1 was the most common species identified before and after community-wide mitigation. No HCoV-positive samples were identified between May 2020-December 2020. Adults aged ≥50 years had the highest detection of HCoV (11%) among virus-positive samples among all age-groups. Species and sequence data showed diversity between and within HCoV species over the study period. Interpretation: HCoV infections occurred in all congregate homeless shelter site age-groups with the greatest proportion among those aged ≥50 years. Species and sequencing data highlight the complexity of HCoV epidemiology within and between shelters sites. Funding: Gates Ventures, Centers for Disease Control and Prevention, National Institute of Health.

20.
Nat Commun ; 13(1): 5240, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068236

ABSTRACT

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Genome, Viral/genetics , Genomics , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Universities
SELECTION OF CITATIONS
SEARCH DETAIL