Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 632(8023): 131-138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020167

ABSTRACT

A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1-4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5-8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6-12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.


Subject(s)
Brain , Hallucinogens , Nerve Net , Psilocybin , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Brain/cytology , Brain/diagnostic imaging , Brain/drug effects , Brain/physiology , Brain Mapping , Default Mode Network/cytology , Default Mode Network/diagnostic imaging , Default Mode Network/drug effects , Default Mode Network/physiology , Hallucinogens/pharmacology , Hallucinogens/administration & dosage , Healthy Volunteers , Hippocampus/cytology , Hippocampus/diagnostic imaging , Hippocampus/drug effects , Hippocampus/physiology , Magnetic Resonance Imaging , Methylphenidate/pharmacology , Methylphenidate/administration & dosage , Nerve Net/cytology , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Nerve Net/physiology , Psilocybin/pharmacology , Psilocybin/administration & dosage , Space Perception/drug effects , Time Perception/drug effects , Ego
2.
Stroke ; 54(10): 2613-2620, 2023 10.
Article in English | MEDLINE | ID: mdl-37638398

ABSTRACT

BACKGROUND: Cerebral microbleeds (CMBs) are associated with cognitive decline, but their importance outside of cerebral amyloid angiopathy and the mechanisms of their impact on cognition are poorly understood. We evaluated the cross-sectional association between CMB patterns and cerebral Aß (amyloid-ß) deposition, by florbetapir positron emission tomography. METHODS: The longitudinal ARIC study (Atherosclerosis Risk in Communities) recruited individuals from 4 US communities from 1987 to 1989. From 2012 to 2014, the ARIC-PET (Atherosclerosis Risk in Communities - Positron Emission Tomography) ancillary recruited 322 nondemented ARIC participants who completed 3T brain magnetic resonance imaging with T2*GRE as part of ARIC visit 5 to undergo florbetapir positron emission tomography imaging. Magnetic resonance imaging images were read for CMBs and superficial siderosis; on positron emission tomography, global cortical standardized uptake value ratio >1.2 was considered a positive Aß scan. Multivariable logistic regression models evaluated CMB characteristics in association with Aß positivity. Effect modification by sex, race, APOE status, and cognition was evaluated. RESULTS: CMBs were present in 24% of ARIC-PET participants. No significant associations were found between CMBs and Aß positivity, but a pattern of isolated lobar CMBs or superficial siderosis was associated with over 4-fold higher odds of elevated Aß when compared with those with no CMBs (odds ratio, 4.72 [95% CI, 1.16-19.16]). A similar elevated risk was not observed in those with isolated subcortical or mixed subcortical and either lobar CMBs or superficial siderosis. Although no significant interactions were found, effect estimates for elevated Aß were nonsignificantly lower (P>0.10, odds ratio, 0.4-0.6) for a mixed CMB pattern, and odds ratios were nonsignificantly higher for lobar-only CMBs for 4 subgroups: women (versus men); Black participants (versus White participants), APOE ε4 noncarriers (versus carriers), and cognitively normal (versus mild cognitive impairment). CONCLUSIONS: In this community-based cohort of nondemented adults, lobar-only pattern of CMBs or superficial siderosis is most strongly associated with brain Aß, with no elevated risk for a mixed CMB pattern. Further studies are needed to understand differences in CMB patterns and their meaning across subgroups.


Subject(s)
Atherosclerosis , Cerebral Amyloid Angiopathy , Siderosis , Male , Humans , Female , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Cross-Sectional Studies , Cerebral Amyloid Angiopathy/diagnostic imaging , Amyloid beta-Peptides , Positron-Emission Tomography , Magnetic Resonance Imaging
3.
Bioconjug Chem ; 34(10): 1882-1893, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37710950

ABSTRACT

The pretargeting approach separates the biological half-life of an antibody from the physical half-life of the radioisotope label, providing a strategy for reducing the radiation burden. A widely explored pretargeting approach makes use of the bioorthogonal click reaction between tetrazines (Tzs) and trans-cyclooctenes (TCOs), combining the targeting specificity of monoclonal antibodies (mAbs) with the rapid clearance and precise reaction of Tzs and TCOs. Such a strategy can allow for the targeting and imaging (e.g., by positron emission tomography (PET)) of molecular markers, which cannot be addressed by solely relying on small molecules. Tz derivatives that undergo inverse electron-demand Diels-Alder (IEDDA) reactions with an antibody bearing TCO moieties have been investigated. This study describes the synthesis and characterization of 11 cold Tz imaging agent candidates. These molecules have the potential to be radiolabeled with 18F or 3H, and with the former label, they could be of use as imaging tracers for positron emission tomography studies. Selection was made using a multiparameter optimization score for the central nervous system (CNS) PET tracers. Novel tetrazines were tested for their pH-dependent chemical stability. Those which turned out to be stable in a pH range of 6.5-8 were further characterized in in vitro assays with regard to their passive permeability, microsomal stability, and P-glycoprotein transport. Furthermore, selected Tzs were examined for their systemic clearance and CNS penetration in a single-dose pharmacokinetic study in rats. Two tetrazines were successfully labeled with 18F, one of which showed brain penetration in a biodistribution study in mice. Another Tz was successfully tritium-labeled and used to demonstrate a bioorthogonal click reaction on a TCO-modified antibody. As a result, we identified one Tz as a potential fluorine-18-labeled CNS-PET agent and a second as a 3H-radioligand for an IEDDA-based reaction with a modified brain-penetrating antibody.


Subject(s)
Heterocyclic Compounds , Mice , Rats , Animals , Tissue Distribution , Positron-Emission Tomography/methods , Antibodies, Monoclonal/chemistry , Radiopharmaceuticals/chemistry , Central Nervous System
4.
Ann Neurol ; 92(4): 607-619, 2022 10.
Article in English | MEDLINE | ID: mdl-35732594

ABSTRACT

OBJECTIVE: Midlife vascular risk factors (MVRFs) are associated with incident dementia, as are amyloid ß (Aß) deposition and neurodegeneration. Whether vascular and Alzheimer disease-associated factors contribute to dementia independently or interact synergistically to reduce cognition is poorly understood. METHODS: Participants in the Atherosclerosis Risk in Communities-Positron Emission Tomography study were followed from 1987-1989 (45-64 years old) through 2016-2017 (74-94 years old), with repeat cognitive assessment and dementia adjudication. In 2011-2013, dementia-free participants underwent brain magnetic resonance imaging (with white matter hyperintensity [WMH] and brain volume measurement) and florbetapir (Aß) positron emission tomography. The relative contributions of vascular risk and injury (MVRFs, WMH volume), elevated Aß standardized uptake value ratio (SUVR), and neurodegeneration (smaller temporoparietal brain regions) to incident dementia were evaluated with adjusted Cox models. RESULTS: In 298 individuals, 36 developed dementia (median follow-up = 4.9 years). Midlife hypertension and Aß each independently predicted dementia risk (hypertension: hazard ratio [HR] = 2.57, 95% confidence interval [CI] = 1.16-5.67; Aß SUVR [per standard deviation (SD)]: HR = 2.57, 95% CI = 1.72-3.84), but did not interact significantly, whereas late life diabetes (HR = 2.50, 95% CI = 1.18-5.28) and Aß independently predicted dementia risk. WMHs (per SD: HR = 1.51, 95% CI = 1.03-2.20) and Aß SUVR (HR = 2.52, 95% CI = 1.83-3.47) independently contributed to incident dementia, but WMHs lost significance when MVRFs were included. Smaller temporoparietal brain regions were associated with incident dementia, independent of Aß and MVRFs (HR = 2.18, 95% CI = 1.18-4.01). INTERPRETATION: Midlife hypertension and late life Aß are independently associated with dementia risk, without evidence for synergy on a multiplicative scale. Given the independent contributions of vascular and amyloid mechanisms, multiple pathways should be considered when evaluating interventions to reduce the burden of dementia. ANN NEUROL 2022;92:607-619.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hypertension , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/pathology , Humans , Hypertension/epidemiology , Magnetic Resonance Imaging , Middle Aged , Positron-Emission Tomography
5.
Neurochem Res ; 48(5): 1517-1530, 2023 May.
Article in English | MEDLINE | ID: mdl-36525123

ABSTRACT

Values of binding potentials (BPND) of dopamine D2/3 receptors differ in different regions of the brain, but we do not know with certainty how much of this difference is due either to different receptor numbers, or to different affinities of tracers to the receptors, or to both. We tested the claim that both striatal and extrastriatal dopamine D2/3 receptor availabilities vary with age in vivo in humans by determining the values of BPND of the specific radioligand [11C]raclopride. We determined values of BPND in striatal and extrastriatal volumes-of-interest (VOI) with the same specific receptor radioligand. We estimated values of BPND in individual voxels of brains of healthy volunteers in vivo, and we obtained regional averages of VOI by dynamic positron emission tomography (PET). We calculated average values of BPND in caudate nucleus and putamen of striatum, and in frontal, occipital, parietal, and temporal cortices of the forebrain, by means of four methods, including the ERLiBiRD (Estimation of Reversible Ligand Binding and Receptor Density) method, the tissue reference methods of Logan and Logan-Ichise, respectively, and the SRTM (Simplified Reference Tissue Method). Voxelwise generation of parametric maps of values of BPND used the multi-linear regression version of SRTM. Age-dependent changes of the binding potential presented with an inverted U-shape with peak binding potentials reached between the ages of 20 and 30. The estimates of BPND declined significantly with age after the peak in both striatal and extrastriatal regions, as determined by all four methods, with the greatest decline observed in posterior (occipital and parietal) cortices (14% per decade) and the lowest decline in caudate nucleus (3% per decade). The sites of the greatest declines are of particular interest because of the clinical implications.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Humans , Adult , Young Adult , Dopamine/metabolism , Receptors, Dopamine D2/metabolism , Brain/diagnostic imaging , Brain/metabolism , Raclopride , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Positron-Emission Tomography/methods , Receptors, Dopamine D3/metabolism
6.
Brain ; 145(11): 4065-4079, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35856240

ABSTRACT

Alzheimer's disease biomarkers are becoming increasingly important for characterizing the longitudinal course of disease, predicting the timing of clinical and cognitive symptoms, and for recruitment and treatment monitoring in clinical trials. In this work, we develop and evaluate three methods for modelling the longitudinal course of amyloid accumulation in three cohorts using amyloid PET imaging. We then use these novel approaches to investigate factors that influence the timing of amyloid onset and the timing from amyloid onset to impairment onset in the Alzheimer's disease continuum. Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA) and the Wisconsin Registry for Alzheimer's Prevention (WRAP). Amyloid PET was used to assess global amyloid burden. Three methods were evaluated for modelling amyloid accumulation using 10-fold cross-validation and holdout validation where applicable. Estimated amyloid onset age was compared across all three modelling methods and cohorts. Cox regression and accelerated failure time models were used to investigate whether sex, apolipoprotein E genotype and e4 carriage were associated with amyloid onset age in all cohorts. Cox regression was used to investigate whether apolipoprotein E (e4 carriage and e3e3, e3e4, e4e4 genotypes), sex or age of amyloid onset were associated with the time from amyloid onset to impairment onset (global clinical dementia rating ≥1) in a subset of 595 ADNI participants that were not impaired before amyloid onset. Model prediction and estimated amyloid onset age were similar across all three amyloid modelling methods. Sex and apolipoprotein E e4 carriage were not associated with PET-measured amyloid accumulation rates. Apolipoprotein E genotype and e4 carriage, but not sex, were associated with amyloid onset age such that e4 carriers became amyloid positive at an earlier age compared to non-carriers, and greater e4 dosage was associated with an earlier amyloid onset age. In the ADNI, e4 carriage, being female and a later amyloid onset age were all associated with a shorter time from amyloid onset to impairment onset. The risk of impairment onset due to age of amyloid onset was non-linear and accelerated for amyloid onset age >65. These findings demonstrate the feasibility of modelling longitudinal amyloid accumulation to enable individualized estimates of amyloid onset age from amyloid PET imaging. These estimates provide a more direct way to investigate the role of amyloid and other factors that influence the timing of clinical impairment in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Longitudinal Studies , Apolipoprotein E4/genetics , Amyloid , Positron-Emission Tomography/methods , Amyloidogenic Proteins , Amyloid beta-Peptides
7.
J Labelled Comp Radiopharm ; 66(9): 222-236, 2023 07.
Article in English | MEDLINE | ID: mdl-37095603

ABSTRACT

The beta-site amyloid precursor protein cleaving enzyme (BACE1) is responsible for initiating the generation of beta-amyloid, the major constituent of amyloid plaques in Alzheimer's disease (AD). The purpose of this study was to develop a specific BACE1 radioligand for visualization of the distribution pattern and quantification of the BACE1 protein in the rodent and monkey brain both in vitro by autoradiography and in vivo by positron emission tomography (PET). The BACE1 inhibitor RO6807936 originating from an in-house chemical drug optimization program was selected based on its PET tracer-like physicochemical properties and a favorable pharmacokinetic profile. Saturation binding analysis of [3 H]RO6807936 revealed specific and high-affinity binding (KD = 2.9 nM) and a low Bmax value (4.3 nM) of the BACE1 protein in native rat brain membranes. [3 H]RO6807936 binding showed a ubiquitous distribution on rat brain slices in vitro with higher levels in the CA3 pyramidal cell layer and the granule cell layer of the hippocampus. In a next step, RO6807936 was successfully radiolabeled with carbon-11 and showed acceptable uptake in the baboon brain as well as a widespread and rather homogeneous distribution consistent with rodent data. In vivo blockade studies with a specific BACE1 inhibitor reduced uptake of the tracer to homogenous levels across brain regions and demonstrated specificity of the signal. Our data warrant further profiling of this PET tracer candidate in humans to investigate BACE1 expression in normal individuals and those with AD and as an imaging biomarker for target occupancy studies in clinical drug trials.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Rats , Animals , Humans , Amyloid beta-Protein Precursor/metabolism , Rodentia/metabolism , Amyloid Precursor Protein Secretases/metabolism , Papio/metabolism , Aspartic Acid Endopeptidases/metabolism , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Amyloid beta-Peptides/metabolism
8.
Hum Brain Mapp ; 43(4): 1419-1430, 2022 03.
Article in English | MEDLINE | ID: mdl-34873784

ABSTRACT

Opioid receptors are expressed throughout the brain and play a major role in regulating striatal dopamine (DA) release. Clinical studies have shown that naloxone (NAL, a nonspecific opioid antagonist) in individuals with opioid use disorder and morphine (MRP, a nonspecific opioid agonist) in healthy controls, resulted in DA release in the dorsal and ventral striatum, respectively. It is not known whether the underlying patterns of striatal DA release are associated with the striatal distribution of opioid receptors. We leveraged previously published PET datasets (collected in independent cohorts) to study the brain-wide distribution of opioid receptors and to compare striatal opioid receptor availability with striatal DA release patterns. We identified three major gray matter segments based on availability maps of DA and opioid receptors: striatum, and primary and secondary opioid segments with high and intermediate opioid receptor availability, respectively. Patterns of DA release induced by NAL and MRP were inversely associated and correlated with kappa (NAL: r(68) = -0.81, MRP: r(68) = 0.54), and mu (NAL: r(68) = -0.62, MRP: r(68) = 0.46) opioid receptor availability. Kappa opioid receptor availability accounted for a unique part of variance in NAL- and MRP-DA release patterns (ΔR2 >0.14, p <.0001). In sum, distributions of opioid receptors distinguished major cortical and subcortical regions. Patterns of NAL- and MRP-induced DA release had inverse associations with striatal opioid receptor availability. Our approach provides a pattern-based characterization of drug-induced DA targets and is relevant for modeling the role of opioid receptors in modulating striatal DA release.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Morphine/pharmacology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Narcotics/pharmacology , Receptors, Opioid/metabolism , Adult , Corpus Striatum/diagnostic imaging , Female , Humans , Male , Positron-Emission Tomography , Retrospective Studies
9.
J Clin Periodontol ; 49(4): 322-334, 2022 04.
Article in English | MEDLINE | ID: mdl-34905804

ABSTRACT

AIM: We investigate if periodontal disease is prospectively associated with cerebrovascular and neurodegenerative markers of dementia and Alzheimer's pathology. MATERIALS AND METHODS: N = 1306 participants (Visit 5 mean age = 76.5 [standard deviation = 5.4] years) in the Atherosclerosis Risk in Communities study with completed dental exams at Visit 4 underwent brain magnetic resonance imaging scans at Visit 5 while N = 248 underwent positron emission tomography scans. Participants were classified as edentulous or, among the dentate, by the modified Periodontal Profile Class. Brain volumes were regressed on periodontal status in linear regressions. Cerebrovascular measures and ß-amyloid positivity were regressed on periodontal status in logistic regressions. RESULTS: Periodontal disease was not associated with brain volumes, microhaemorrhages, or elevated ß-amyloid. Compared with periodontally healthy individuals, odds ratios [95% confidence interval] for all-type infarcts were 0.37 [0.20, 0.65] for severe tooth loss and 0.56 [0.31, 0.99] for edentulous participants. CONCLUSIONS: Within the limitations of this study, periodontal disease was not associated with altered brain volumes, microhaemorrhages, or ß-amyloid positivity. Tooth loss was associated with lower odds of cerebral infarcts.


Subject(s)
Atherosclerosis , Periodontal Diseases , Tooth Loss , Aged , Amyloid beta-Peptides/metabolism , Atherosclerosis/complications , Atherosclerosis/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Humans , Neuroimaging , Periodontal Diseases/complications , Periodontal Diseases/diagnostic imaging , Tooth Loss/complications , Tooth Loss/diagnostic imaging
10.
PLoS Med ; 18(5): e1003615, 2021 05.
Article in English | MEDLINE | ID: mdl-34043628

ABSTRACT

BACKGROUND: While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis. METHODS AND FINDINGS: We used a 3-step study design to examine the role of the primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA) as well as their principal biosynthetic precursor, 7α-hydroxycholesterol (7α-OHC), in dementia. In Step 1, we tested whether serum markers of cholesterol catabolism were associated with brain amyloid accumulation, white matter lesions (WMLs), and brain atrophy. In Step 2, we tested whether exposure to bile acid sequestrants (BAS) was associated with risk of dementia. In Step 3, we examined plausible mechanisms underlying these findings by testing whether brain levels of primary BAs and gene expression of their principal receptors are altered in AD. Step 1: We assayed serum concentrations CA, CDCA, and 7α-OHC and used linear regression and mixed effects models to test their associations with brain amyloid accumulation (N = 141), WMLs, and brain atrophy (N = 134) in the Baltimore Longitudinal Study of Aging (BLSA). The BLSA is an ongoing, community-based cohort study that began in 1958. Participants in the BLSA neuroimaging sample were approximately 46% male with a mean age of 76 years; longitudinal analyses included an average of 2.5 follow-up magnetic resonance imaging (MRI) visits. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 1,666) to validate longitudinal neuroimaging results in BLSA. ADNI is an ongoing, community-based cohort study that began in 2003. Participants were approximately 55% male with a mean age of 74 years; longitudinal analyses included an average of 5.2 follow-up MRI visits. Lower serum concentrations of 7α-OHC, CA, and CDCA were associated with higher brain amyloid deposition (p = 0.041), faster WML accumulation (p = 0.050), and faster brain atrophy mainly (false discovery rate [FDR] p = <0.001-0.013) in males in BLSA. In ADNI, we found a modest sex-specific effect indicating that lower serum concentrations of CA and CDCA were associated with faster brain atrophy (FDR p = 0.049) in males.Step 2: In the Clinical Practice Research Datalink (CPRD) dataset, covering >4 million registrants from general practice clinics in the United Kingdom, we tested whether patients using BAS (BAS users; 3,208 with ≥2 prescriptions), which reduce circulating BAs and increase cholesterol catabolism, had altered dementia risk compared to those on non-statin lipid-modifying therapies (LMT users; 23,483 with ≥2 prescriptions). Patients in the study (BAS/LMT) were approximately 34%/38% male and with a mean age of 65/68 years; follow-up time was 4.7/5.7 years. We found that BAS use was not significantly associated with risk of all-cause dementia (hazard ratio (HR) = 1.03, 95% confidence interval (CI) = 0.72-1.46, p = 0.88) or its subtypes. We found a significant difference between the risk of VaD in males compared to females (p = 0.040) and a significant dose-response relationship between BAS use and risk of VaD (p-trend = 0.045) in males.Step 3: We assayed brain tissue concentrations of CA and CDCA comparing AD and control (CON) samples in the BLSA autopsy cohort (N = 29). Participants in the BLSA autopsy cohort (AD/CON) were approximately 50%/77% male with a mean age of 87/82 years. We analyzed single-cell RNA sequencing (scRNA-Seq) data to compare brain BA receptor gene expression between AD and CON samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 46). ROSMAP is an ongoing, community-based cohort study that began in 1994. Participants (AD/CON) were approximately 56%/36% male with a mean age of 85/85 years. In BLSA, we found that CA and CDCA were detectable in postmortem brain tissue samples and were marginally higher in AD samples compared to CON. In ROSMAP, we found sex-specific differences in altered neuronal gene expression of BA receptors in AD. Study limitations include the small sample sizes in the BLSA cohort and likely inaccuracies in the clinical diagnosis of dementia subtypes in primary care settings. CONCLUSIONS: We combined targeted metabolomics in serum and amyloid positron emission tomography (PET) and MRI of the brain with pharmacoepidemiologic analysis to implicate dysregulation of cholesterol catabolism in dementia pathogenesis. We observed that lower serum BA concentration mainly in males is associated with neuroimaging markers of dementia, and pharmacological lowering of BA levels may be associated with higher risk of VaD in males. We hypothesize that dysregulation of BA signaling pathways in the brain may represent a plausible biologic mechanism underlying these results. Together, our observations suggest a novel mechanism relating abnormalities in cholesterol catabolism to risk of dementia.


Subject(s)
Bile Acids and Salts/metabolism , Dementia/epidemiology , Aged , Aged, 80 and over , Bile Acids and Salts/biosynthesis , Dementia/metabolism , Female , Gene Expression Profiling , Humans , Incidence , Male , Metabolomics , Middle Aged , Pharmacoepidemiology , United Kingdom/epidemiology
11.
Eur J Clin Pharmacol ; 77(5): 717-725, 2021 May.
Article in English | MEDLINE | ID: mdl-33196868

ABSTRACT

PURPOSE: The aim of this Phase 1, open-label, positron emission tomography (PET) study was to determine the degree of striatal D2/D3 receptor occupancy induced by the serotonin-dopamine activity modulator, brexpiprazole, at different single dose levels in the range 0.25-6 mg. METHODS: Occupancy was measured at 4 and 23.5 h post-dose using the D2/D3 receptor antagonist [11C]raclopride. The pharmacokinetics, safety and tolerability of brexpiprazole were assessed in parallel. RESULTS: Fifteen healthy participants were enrolled (mean age 33.9 years; 93.3% male). Mean D2/D3 receptor occupancy in the putamen and caudate nucleus increased with brexpiprazole dose, leveled out at 77-88% with brexpiprazole 5 mg and 6 mg at 4 h post-dose, and remained at a similar level at 23.5 h post-dose (74-83%). Estimates of maximum obtainable receptor occupancy (Omax) were 89.2% for the putamen and 95.4% for the caudate nucleus; plasma concentrations predicted to provide 50% of Omax (EC50) were 8.13 ng/mL and 7.75 ng/mL, respectively. Brexpiprazole area under the concentration-time curve (AUC∞) and maximum plasma concentration (Cmax) increased approximately proportional to dose. No notable subjective or objective adverse effects were observed in this cohort. CONCLUSION: By extrapolating the observed single-dose D2/D3 receptor occupancy data in healthy participants, multiple doses of brexpiprazole 2 mg/day and above are expected to result in an efficacious brexpiprazole concentration, consistent with clinically active doses in schizophrenia and major depressive disorder. TRIAL REGISTRATION: ClinicalTrials.gov NCT00805454 December 9, 2008.


Subject(s)
Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Quinolones/pharmacology , Receptors, Dopamine/drug effects , Thiophenes/pharmacology , Adult , Area Under Curve , Corpus Striatum/diagnostic imaging , Dopamine Agonists/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Male , Metabolic Clearance Rate , Positron-Emission Tomography , Quinolones/pharmacokinetics , Thiophenes/pharmacokinetics
12.
Addict Biol ; 26(6): e13061, 2021 11.
Article in English | MEDLINE | ID: mdl-34028926

ABSTRACT

Cannabis effects are predominantly mediated by pharmacological actions on cannabinoid type 1 (CB1 ) receptors. Prior positron emission tomography (PET) studies in individuals who use cannabis included almost exclusively males. PET studies in females are needed because there are sex differences in cannabis effects, progression to cannabis use disorder (CUD), and withdrawal symptom severity. Females with CUD (N = 10) completed two double-blind cannabis smoking sessions (Session 1: placebo; Session 2: active), and acute cannabis effects were assessed. After Session 2, participants underwent 3 days of monitored cannabis abstinence; mood, craving, and withdrawal symptoms were assessed and a PET scan (radiotracer: [11 C]OMAR) followed. [11 C]OMAR Distribution volume (VT ) from these participants was compared with VT of age/BMI-similar female non-users of cannabis ("healthy controls"; N = 10). VT was also compared between female and male healthy controls (N = 7). Females with CUD displayed significantly lower VT than female healthy controls in specific brain regions (hippocampus, amygdala, cingulate, and insula). Amygdala VT was negatively correlated with mood changes (anger/hostility) during abstinence, but VT was not correlated with other withdrawal symptoms or cannabis effects. Among healthy controls, females had significantly higher VT than males in all brain regions examined. Chronic cannabis use appears to foster downregulation of CB1 receptors in women, as observed previously in men, and there are inherent sex differences in CB1 availability. Future studies should elucidate the time course of CB1 downregulation among females who use cannabis and examine the relation between CB1 availability and cannabis effects among other populations (e.g., infrequent users; medicinal users).


Subject(s)
Brain/drug effects , Marijuana Abuse/pathology , Receptor, Cannabinoid, CB1/drug effects , Substance Withdrawal Syndrome/pathology , Adult , Affect/drug effects , Age Factors , Body Mass Index , Brain/diagnostic imaging , Craving/drug effects , Double-Blind Method , Female , Hippocampus/drug effects , Humans , Male , Marijuana Abuse/diagnostic imaging , Patient Acuity , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Self Administration , Young Adult
13.
Alzheimers Dement ; 17(8): 1265-1276, 2021 08.
Article in English | MEDLINE | ID: mdl-33527720

ABSTRACT

INTRODUCTION: Clinic-based study samples, including the Alzheimer's Disease Neuroimaging Initiative (ADNI), offer rich data, but findings may not generalize to community-based settings. We compared associations in ADNI to those in the Atherosclerosis Risk in Communities (ARIC) study to assess generalizability across the two settings. METHODS: We estimated cohort-specific associations among risk factors, cognitive test scores, and neuroimaging outcomes to identify and quantify the extent of significant and substantively meaningful differences in associations between cohorts. We explored whether using more homogenous samples improved comparability in effect estimates. RESULTS: The proportion of associations that differed significantly between cohorts ranged from 27% to 34% across sample subsets. Many differences were substantively meaningful (e.g., odds ratios [OR] for apolipoprotein E ε4 on amyloid positivity in ARIC: OR = 2.8, in ADNI: OR = 8.6). DISCUSSION: A higher proportion of associations differed significantly and substantively than would be expected by chance. Findings in clinical samples should be confirmed in more representative samples.


Subject(s)
Alzheimer Disease , Atherosclerosis , Cohort Studies , Neuroimaging , Public Health , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests/statistics & numerical data , Outcome Assessment, Health Care , Positron-Emission Tomography , Risk Factors
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799851

ABSTRACT

Multiple lines of evidence suggest that dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) plays a role in the pathogenesis of autism spectrum disorder (ASD). Yet animal and human investigations of mGluR5 expression provide conflicting findings about the nature of dysregulation of cerebral mGluR5 pathways in subtypes of ASD. The demonstration of reduced mGluR5 expression throughout the living brains of men with fragile X syndrome (FXS), the most common known single-gene cause of ASD, provides a clue to examine mGluR5 expression in ASD. We aimed to (A) compare and contrast mGluR5 expression in idiopathic autism spectrum disorder (IASD), FXS, and typical development (TD) and (B) show the value of positron emission tomography (PET) for the application of precision medicine for the diagnosis and treatment of individuals with IASD, FXS, and related conditions. Two teams of investigators independently administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a novel, specific mGluR5 PET ligand to quantitatively measure the density and the distribution of mGluR5s in the brain regions, to participants of both sexes with IASD and TD and men with FXS. In contrast to participants with TD, mGluR5 expression was significantly increased in the cortical regions of participants with IASD and significantly reduced in all regions of men with FXS. These results suggest the feasibility of this protocol as a valuable tool to measure mGluR5 expression in clinical trials of individuals with IASD and FXS and related conditions.


Subject(s)
Autism Spectrum Disorder/metabolism , Cerebral Cortex/metabolism , Fragile X Syndrome/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Adolescent , Adult , Animals , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Brain/metabolism , Cerebral Cortex/diagnostic imaging , Female , Fragile X Syndrome/diagnostic imaging , Fragile X Syndrome/genetics , Humans , Male , Middle Aged , Pilot Projects , Positron-Emission Tomography/methods , Receptor, Metabotropic Glutamate 5/genetics , Young Adult
15.
J Neurovirol ; 26(3): 382-390, 2020 06.
Article in English | MEDLINE | ID: mdl-32270469

ABSTRACT

The causes of cognitive impairment among older HIV+ individuals may overlap with causes among elderly HIV seronegative (HIV-) individuals. The objective of this study was to determine if beta-amyloid (Aß) deposition measured by [18F] AV-45 (florbetapir) positron emission tomography (PET) is increased in older HIV+ individuals compared to HIV- individuals. Forty-eight HIV+ and 25 HIV- individuals underwent [18F] AV-45 PET imaging. [18F] AV-45 binding to Aß was measured by standardized uptake value ratios (SUVR) relative to the cerebellum in 16 cortical and subcortical regions of interest. Global and regional cortical SUVRs were compared by (1) serostatus, (2) HAND stage, and (3) age decade, comparing individuals in their 50s and > 60s. There were no differences in median global cortical SUVR stratified by HIV serostatus or HAND stage. The proportion of HIV+ participants in their 50s with elevated global amyloid uptake (SUVR > 1.40) was significantly higher than the proportion in HIV- participants (67% versus 25%, p = 0.04), and selected regional SUVR values were also higher (p < 0.05) in HIV+ compared to HIV- participants in their 50s. However, these group differences were not seen in participants in their 60s. In conclusion, PET imaging found no differences in overall global Aß deposition stratified by HIV serostatus or HAND stage. Although there was some evidence of increased Aß deposition in HIV+ individuals in their 50s compared to HIV- individuals which might indicate premature aging, the most parsimonious explanation for this is the relatively small sample size in this cross-sectional cohort study.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain Mapping/methods , Cognitive Dysfunction/diagnostic imaging , HIV Infections/diagnostic imaging , HIV/pathogenicity , Aged , Aniline Compounds , Biological Transport , Brain , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Cross-Sectional Studies , Ethylene Glycols , Female , Fluorine Radioisotopes , HIV/growth & development , HIV Infections/metabolism , HIV Infections/physiopathology , HIV Infections/virology , Humans , Male , Middle Aged , Positron-Emission Tomography , Severity of Illness Index
16.
Anesthesiology ; 132(6): 1407-1418, 2020 06.
Article in English | MEDLINE | ID: mdl-32412719

ABSTRACT

BACKGROUND: As more older adults undergo surgery, it is critical to understand the long-term effects of surgery on brain health, particularly in relation to the development of Alzheimer's disease. This study examined the association of surgical hospitalization with subsequent brain ß-amyloid deposition in nondemented older adults. METHODS: The Atherosclerosis Risk in Communities-Positron Emission Tomography (ARIC-PET) study is a prospective cohort study of 346 participants without dementia who underwent florbetapir PET imaging. Active surveillance of local hospitals and annual participant contact were used to gather hospitalization and surgical information (International Classification of Disease, Ninth Revision, Clinical Modification codes) over the preceding 24-yr period. Brain amyloid measured using florbetapir PET imaging was the primary outcome. Elevated amyloid was defined as a standardized uptake value ratio of more than 1.2. RESULTS: Of the 313 participants included in this analysis (age at PET: 76.0 [SD 5.4]; 56% female), 72% had a prior hospitalization, and 50% had a prior surgical hospitalization. Elevated amyloid occurred in 87 of 156 (56%) participants with previous surgical hospitalization, compared with 45 of 87 (52%) participants who had no previous hospitalization. Participants with previous surgical hospitalizations did not show an increased odds of elevated brain amyloid (odds ratio, 1.32; 95% CI, 0.72 to 2.40; P = 0.370) after adjusting for confounders (primary analysis). Results were similar using the reference group of all participants without previous surgery (hospitalized and nonhospitalized; odds ratio, 1.58; 95% CI, 0.96 to 2.58; P = 0.070). In a prespecified secondary analysis, participants with previous surgical hospitalization did demonstrate increased odds of elevated amyloid when compared with participants hospitalized without surgery (odds ratio, 2.10; 95% CI, 1.09 to 4.05; P = 0.026). However, these results were attenuated and nonsignificant when alternative thresholds for amyloid-positive status were used. CONCLUSIONS: The results do not support an association between surgical hospitalization and elevated brain amyloid.


Subject(s)
Amyloid/metabolism , Atherosclerosis/metabolism , Brain/diagnostic imaging , Brain/metabolism , Hospitalization/statistics & numerical data , Positron-Emission Tomography/methods , Aged , Aniline Compounds , Cohort Studies , Ethylene Glycols , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prospective Studies , Risk , Surgical Procedures, Operative
17.
Stroke ; 50(12): 3622-3624, 2019 12.
Article in English | MEDLINE | ID: mdl-31597548

ABSTRACT

Background and Purpose- Cardiovascular disease is a known risk factor for cognitive decline, although the mechanisms remain unclear. We hypothesize that Aß (ß-amyloid), a core pathology of Alzheimer's disease, will be associated with subclinical cardiac structure and function echocardiogram indices. Methods- Three hundred six nondemented participants from the ARIC study (Atherosclerosis Risk in Communities Study) underwent florbetapir positron emission tomography and 2D echocardiography (echo). Cross-sectional associations between echo markers of left ventricular structure and function and global cortical Aß (≥1.2 standardized uptake value ratio were evaluated using multivariable logistic regression with interaction terms when appropriate. Results- Participants ranged in age from 67 to 88 years, were 57% female and 42% black. Per 1 cm increase in end-diastolic left ventricular diameter, the odds of elevated florbetapir standardized uptake value ratio doubled (odds ratio, 2.04 [95% CI, 1.10-3.77]), with similar findings when excluding mild cognitive impairment (odds ratio, 2.61 [95% CI, 1.22-5.59]). Conclusions- We have demonstrated a significant association between a marker of left ventricular structure and elevated florbetapir standardized uptake value ratio, identified using positron emission tomography. Ongoing prospective work will help determine if changes in cardiac structure and function either precede, or occur simultaneously with deposition of amyloid.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Heart Ventricles/diagnostic imaging , Ventricular Function, Left , Aged , Aged, 80 and over , Aniline Compounds , Brain/metabolism , Echocardiography , Ethylene Glycols , Female , Fluorine Radioisotopes , Heart Ventricles/pathology , Humans , Logistic Models , Male , Multivariate Analysis , Odds Ratio , Organ Size , Positron-Emission Tomography
18.
J Neurochem ; 150(2): 188-201, 2019 07.
Article in English | MEDLINE | ID: mdl-30720866

ABSTRACT

Humans and non-human primates exposed to excess levels of manganese (Mn) exhibit deficits in working memory and attention. Frontal cortex and fronto-striatal networks are implicated in working memory and these circuits rely on dopamine for optimal performance. Here, we aimed to determine if chronic Mn exposure alters in vivo dopamine release (DAR) in the frontal cortex of non-human primates. We used [11 C]-FLB457 positron emission tomography with amphetamine challenge to measure DAR in Cynomolgus macaques. Animals received [11 C]-FLB457 positron emission tomography scans with and without amphetamine challenge prior to Mn exposure (baseline), at different time points during the Mn exposure period, and after 10 months of Mn exposure cessation. Four of six Mn-exposed animals expressed significant impairment of frontal cortex in vivo DAR relative to baseline. One Mn animal had no change in DAR and another Mn animal expressed increased DAR relative to baseline. In the reversal studies, one Mn-exposed animal exhibited complete recovery of DAR while the second animal had partial recovery. In both animals, frontal cortex Mn concentrations normalized after 10 months of exposure cessation based on T1-weighted magnetic resonance imaging. D1-dopamine receptor (D1R) autoradiography in frontal cortex tissue indicates that Mn animals that experienced cessation of Mn exposure expressed D1R levels that were approximately 50% lower than Mn animals that did not experience cessation of Mn exposure or control animals. The present study provides evidence of Mn-induced alterations in frontal cortex DAR and D1R that may be associated with working memory and attention deficits observed in Mn-exposed subjects.


Subject(s)
Dopamine/metabolism , Frontal Lobe/drug effects , Manganese/toxicity , Animals , Attention/drug effects , Dopamine/analysis , Frontal Lobe/metabolism , Macaca fascicularis , Memory, Short-Term/drug effects , Positron-Emission Tomography , Receptors, Dopamine/drug effects , Receptors, Dopamine/metabolism
19.
Brain ; 141(8): 2475-2485, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29901697

ABSTRACT

Understanding short-term cognitive decline in relation to Alzheimer's neuroimaging biomarkers in early stages of the development of neuropathology and neurodegeneration will inform participant recruitment and monitoring strategies in clinical trials aimed at prevention of cognitive impairment and dementia. We assessed associations among neuroimaging measures of cerebral amyloid pathology, a hallmark Alzheimer's neuropathology, hippocampal atrophy, and prospective cognition among 171 cognitively normal Baltimore Longitudinal Study of Aging participants (baseline age 56-95 years, 48% female, 562 cognitive assessments, 3.7 years follow-up). We categorized each individual based on dichotomous amyloid pathology (A) and hippocampal neurodegeneration (N) status at baseline: A-N-, A+N-, A-N+, A+N+. We conducted linear mixed effects analyses to assess cross-sectional and longitudinal trends in cognitive test z-scores by amyloid and neurodegeneration group. To investigate the effects of amyloid dose and degree of hippocampal atrophy, we assessed the associations of continuous mean cortical amyloid level and hippocampal volume with cognitive performance among individuals with detectable amyloid pathology at baseline. Individuals with amyloidosis or hippocampal atrophy had steeper longitudinal declines in verbal episodic memory and learning compared to those with neither condition (A+N- versus A-N-: ß = - 0.069, P = 0.017; A-N+ versus A-N-: ß = - 0.081, P = 0.025). Among individuals with hippocampal atrophy, amyloid positivity was associated with steeper declines in verbal memory (ß = - 0.123, P = 0.015), visual memory (ß = - 0.121, P = 0.036), language (ß = - 0.144, P = 0.0004), and mental status (ß = - 0.242, P = 0.002). Similarly, among individuals with amyloidosis, hippocampal atrophy was associated with steeper declines in verbal memory (ß = - 0.135, P = 0.004), visual memory (ß = - 0.141, P = 0.010), language (ß = - 0.108, P = 0.006), and mental status (ß = - 0.165, P = 0.022). Presence of both amyloidosis and hippocampal atrophy was associated with greater declines than would be expected by their additive contributions in visual memory (ß = - 0.139, P = 0.036), language (ß = - 0.132, P = 0.005), and mental status (ß = - 0.170, P = 0.049). Neither amyloidosis nor hippocampal atrophy was predictive of declines in executive function, processing speed, or visuospatial ability. Among individuals with amyloidosis, higher baseline amyloid level was associated with lower concurrent visual memory, steeper declines in language, visuospatial ability, and mental status, whereas greater hippocampal atrophy was associated with steeper declines in category fluency. Our results suggest that both amyloid pathology and neurodegeneration have disadvantageous, in part synergistic, effects on prospective cognition. These cognitive effects are detectable early among cognitively normal individuals with amyloidosis, who are in preclinical stages of Alzheimer's disease according to research criteria. Our findings highlight the importance of early intervention to target both amyloidosis and atrophy to preserve cognitive function before further damage occurs.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/physiopathology , Plaque, Amyloid/pathology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/pathology , Atrophy/pathology , Biomarkers , Cerebral Cortex/pathology , Executive Function , Female , Hippocampus/metabolism , Humans , Longitudinal Studies , Male , Middle Aged , Neurodegenerative Diseases/pathology , Neuroimaging , Neuropsychological Tests , Positron-Emission Tomography , Prospective Studies
20.
Neuroimage ; 165: 118-124, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28993233

ABSTRACT

Altered function of the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is implicated in several neuropsychiatric diseases. Nevertheless, studies of the human cerebral α7-nAChR even in healthy aging are limited in number and to postmortem tissue. METHODS: The distribution of the cerebral α7-nAChR was estimated in nine brain regions in 25 healthy volunteers (ages 21-86 years; median 57 years, interquartile range 52 years) using [18F]ASEM with positron emission tomography (PET) imaging. Regional total distribution volume (VT) measurements were calculated using the Logan method from each subject's 90 min dynamic PET data and their metabolite-corrected plasma input function. Spearman's rank or Pearson's correlation analysis was used depending on the normality of the data. Correlation between age and regional 1) volume relative to intracranial volume (volume ratio) and 2) [18F]ASEM VT was tested. Correlation between regional volume ratio and [18F]ASEM VT was also evaluated. Finally, the relationship between [18F]ASEM VT and neuropsychological measures was investigated in a subpopulation of 15 elderly healthy participants (those 50 years of age and older). Bonferroni correction for multiple comparisons was applied to statistical analyses. RESULTS: A negative correlation between tissue volume ratio and age was observed in six of the nine brain regions including striatum and five cortical (temporal, occipital, cingulate, frontal, or parietal) regions. A positive correlation between [18F]ASEM VT and age was observed in all nine brain regions of interest (ROIs). There was no correlation between [18F]ASEM VT and volume ratio in any ROI after controlling for age. Regional [18F]ASEM VT and neuropsychological performance on each of eight representative subtests were not correlated among the well-performing subpopulation of elderly healthy participants. CONCLUSIONS: Our results suggest an increase in cerebral α7-nAChR distribution over the course of healthy aging that should be tested in future longitudinal studies. The preservation of the α7-nAChR in the aging human brain supports the development of therapeutic agents that target this receptor for use in the elderly. Further study of the relationship between α7-nAChR availability and cognitive impairment over aging is needed.


Subject(s)
Brain/metabolism , Healthy Aging/metabolism , alpha7 Nicotinic Acetylcholine Receptor/analysis , Adult , Aged , Aged, 80 and over , Azabicyclo Compounds , Cyclic S-Oxides , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL