Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Biol Chem ; 300(1): 105547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072047

ABSTRACT

As an important posttranslational modification, SUMOylation plays critical roles in almost all biological processes. Although it has been well-documented that SUMOylated proteins are mainly localized in the nucleus and have roles in chromatin-related processes, we showed recently that the SUMOylation machinery is actually enriched in the nuclear matrix rather than chromatin. Here, we provide compelling biochemical, cellular imaging and proteomic evidence that SUMOylated proteins are highly enriched in the nuclear matrix. We demonstrated that inactivation of SUMOylation by inhibiting SUMO-activating E1 enzyme or KO of SUMO-conjugating E2 enzyme UBC9 have only mild effect on nuclear matrix composition, indicating that SUMOylation is neither required for nuclear matrix formation nor for targeting proteins to nuclear matrix. Further characterization of UBC9 KO cells revealed that loss of SUMOylation did not result in significant DNA damage, but led to mitotic arrest and chromosome missegregation. Altogether, our study demonstrates that SUMOylated proteins are selectively enriched in the nuclear matrix and suggests a role of nuclear matrix in mediating SUMOylation and its regulated biological processes.


Subject(s)
Chromosome Segregation , Nuclear Matrix , Small Ubiquitin-Related Modifier Proteins , Sumoylation , Chromatin/metabolism , Nuclear Matrix/metabolism , Proteomics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Humans , Animals , Drosophila melanogaster
2.
EMBO Rep ; 23(7): e54132, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35652247

ABSTRACT

Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.


Subject(s)
Insulin Resistance , Secretin , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Female , Humans , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Obesity/prevention & control , Pregnancy , Secretin/metabolism
3.
Nature ; 564(7734): 136-140, 2018 12.
Article in English | MEDLINE | ID: mdl-30487604

ABSTRACT

Postnatal growth of mammalian oocytes is accompanied by a progressive gain of DNA methylation, which is predominantly mediated by DNMT3A, a de novo DNA methyltransferase1,2. Unlike the genome of sperm and most somatic cells, the oocyte genome is hypomethylated in transcriptionally inert regions2-4. However, how such a unique feature of the oocyte methylome is determined and its contribution to the developmental competence of the early embryo remains largely unknown. Here we demonstrate the importance of Stella, a factor essential for female fertility5-7, in shaping the oocyte methylome in mice. Oocytes that lack Stella acquire excessive DNA methylation at the genome-wide level, including in the promoters of inactive genes. Such aberrant hypermethylation is partially inherited by two-cell-stage embryos and impairs zygotic genome activation. Mechanistically, the loss of Stella leads to ectopic nuclear accumulation of the DNA methylation regulator UHRF18,9, which results in the mislocalization of maintenance DNA methyltransferase DNMT1 in the nucleus. Genetic analysis confirmed the primary role of UHRF1 and DNMT1 in generating the aberrant DNA methylome in Stella-deficient oocytes. Stella therefore safeguards the unique oocyte epigenome by preventing aberrant de novo DNA methylation mediated by DNMT1 and UHRF1.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Epigenesis, Genetic , Oocytes/metabolism , Repressor Proteins/metabolism , Animals , CCAAT-Enhancer-Binding Proteins , Cell Line , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Embryonic Development , Female , Genome/genetics , Humans , Mice , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/deficiency , Repressor Proteins/genetics , Ubiquitin-Protein Ligases , Zygote/metabolism
4.
Development ; 147(18)2020 09 28.
Article in English | MEDLINE | ID: mdl-32988975

ABSTRACT

Teleost zebrafish and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). Although many mitogenic signals that stimulate zebrafish heart regeneration have been identified, transcriptional programs that restrain injury-induced CM renewal are incompletely understood. Here, we report that mutations in gridlock (grl; also known as hey2), encoding a Hairy-related basic helix-loop-helix transcriptional repressor, enhance CM proliferation and reduce fibrosis following damage. In contrast, myocardial grl induction blunts CM dedifferentiation and regenerative responses to heart injury. RNA sequencing analyses uncover Smyd2 lysine methyltransferase (KMT) as a key transcriptional target repressed by Grl. Reduction in Grl protein levels triggered by injury induces smyd2 expression at the wound myocardium, enhancing CM proliferation. We show that Smyd2 functions as a methyltransferase and modulates the Stat3 methylation and phosphorylation activity. Inhibition of the KMT activity of Smyd2 reduces phosphorylated Stat3 at cardiac wounds, suppressing the elevated CM proliferation in injured grl mutant hearts. Our findings establish an injury-specific transcriptional repression program in governing CM renewal during heart regeneration, providing a potential strategy whereby silencing Grl repression at local regions might empower regeneration capacity to the injured mammalian heart.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Heart/physiology , Lysine/genetics , Methyltransferases/genetics , Regeneration/genetics , Transcription, Genetic/genetics , Vertebrates/genetics , Zebrafish Proteins/genetics , Animals , Animals, Newborn , Cell Differentiation/genetics , Cell Proliferation/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Zebrafish/genetics
5.
Nucleic Acids Res ; 49(14): 8037-8059, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34259319

ABSTRACT

Recent studies demonstrate that histones are subjected to a series of short-chain fatty acid modifications that is known as histone acylations. However, the enzymes responsible for histone acylations in vivo are not well characterized. Here, we report that HBO1 is a versatile histone acyltransferase that catalyzes not only histone acetylation but also propionylation, butyrylation and crotonylation both in vivo and in vitro and does so in a JADE or BRPF family scaffold protein-dependent manner. We show that the minimal HBO1/BRPF2 complex can accommodate acetyl-CoA, propionyl-CoA, butyryl-CoA and crotonyl-CoA. Comparison of CBP and HBO1 reveals that they catalyze histone acylations at overlapping as well as distinct sites, with HBO1 being the key enzyme for H3K14 acylations. Genome-wide chromatin immunoprecipitation assay demonstrates that HBO1 is highly enriched at and contributes to bulk histone acylations on the transcriptional start sites of active transcribed genes. HBO1 promoter intensity highly correlates with the level of promoter histone acylation, but has no significant correlation with level of transcription. We also show that HBO1 is associated with a subset of DNA replication origins. Collectively our study establishes HBO1 as a versatile histone acyltransferase that links histone acylations to promoter acylations and selection of DNA replication origins.


Subject(s)
Chromatin/genetics , Histone Acetyltransferases/genetics , Histones/genetics , Acetyl Coenzyme A/genetics , Acyl Coenzyme A/genetics , Acylation/genetics , DNA Replication/genetics , Homeodomain Proteins/genetics , Humans , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/genetics , Replication Origin/genetics , Tumor Suppressor Proteins/genetics
6.
J Biol Chem ; 297(4): 101200, 2021 10.
Article in English | MEDLINE | ID: mdl-34537242

ABSTRACT

As a conserved posttranslational modification, SUMOylation has been shown to play important roles in chromatin-related biological processes including transcription. However, how the SUMOylation machinery associates with chromatin is not clear. Here, we present evidence that multiple SUMOylation machinery components, including SUMO E1 proteins SAE1 and SAE2 and the PIAS (protein inhibitor of activated STAT) family SUMO E3 ligases, are primarily associated with the nuclear matrix rather than with chromatin. We show using nuclease digestion that all PIAS family proteins maintain nuclear matrix association in the absence of chromatin. Of importance, we identify multiple histones including H3 and H2A.Z as directly interacting with PIAS1 and demonstrate that this interaction requires the PIAS1 SAP (SAF-A/B, Acinus, and PIAS) domain. We demonstrate that PIAS1 promotes SUMOylation of histones H3 and H2B in both a SAP domain- and an E3 ligase activity-dependent manner. Furthermore, we show that PIAS1 binds to heat shock-induced genes and represses their expression and that this function also requires the SAP domain. Altogether, our study reveals for the first time the nuclear matrix as the compartment most enriched in SUMO E1 and PIAS family E3 ligases. Our finding that PIAS1 interacts directly with histone proteins also suggests a molecular mechanism as to how nuclear matrix-associated PIAS1 is able to regulate transcription and other chromatin-related processes.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Protein Inhibitors of Activated STAT/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription, Genetic , Chromatin/genetics , HEK293 Cells , HeLa Cells , Histones/genetics , Humans , Protein Domains , Protein Inhibitors of Activated STAT/genetics , Small Ubiquitin-Related Modifier Proteins/genetics
7.
J Biol Chem ; 297(6): 101389, 2021 12.
Article in English | MEDLINE | ID: mdl-34762910

ABSTRACT

SRY-box 2 (Sox2) is a transcription factor with critical roles in maintaining embryonic stem (ES) cell and adult stem cell functions and in tumorigenesis. However, how Sox2 exerts its transcriptional function remains unclear. Here, we used an in vitro protein-protein interaction assay to discover transcriptional regulators for ES cell core transcription factors (Oct4, Sox2, Klf4, and c-Myc) and identified members of the steroid receptor coactivators (SRCs) as Sox2-specific interacting proteins. The SRC family coactivators have broad roles in transcriptional regulation, but it is unknown whether they also serve as Sox2 coactivators. We demonstrated that these proteins facilitate Sox2 transcriptional activity and act synergistically with p300. Furthermore, we uncovered an acetylation-enhanced interaction between Sox2 and SRC-2/3, but not SRC-1, demonstrating it is Sox2 acetylation that promotes the interaction. We identified putative Sox2 acetylation sites required for acetylation-enhanced interaction between Sox2 and SRC-3 and demonstrated that acetylation on these sites contributes to Sox2 transcriptional activity and recruitment of SRC-3. We showed that activation domains 1 and 2 of SRC-3 both display a preferential binding to acetylated Sox2. Finally, functional analyses in mouse ES cells demonstrated that knockdown of SRC-2/3 but not SRC-1 in mouse ES cells significantly downregulates the transcriptional activities of various Sox2 target genes and impairs ES cell stemness. Taken together, we identify specific SRC family proteins as novel Sox2 coactivators and uncover the role of Sox2 acetylation in promoting coactivator recruitment and Sox2 transcriptional function.


Subject(s)
Nuclear Receptor Coactivator 1/metabolism , Nuclear Receptor Coactivator 2/metabolism , Nuclear Receptor Coactivator 3/metabolism , SOXB1 Transcription Factors/metabolism , Transcription, Genetic , Acetylation , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Nuclear Receptor Coactivator 1/genetics , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 3/genetics , SOXB1 Transcription Factors/genetics
8.
Genome Res ; 29(10): 1622-1634, 2019 10.
Article in English | MEDLINE | ID: mdl-31537639

ABSTRACT

How individual genes are regulated from a mitochondrial polycistronic transcript to have variable expression remains an enigma. Here, through bisulfite sequencing and strand-specific mapping, we show mitochondrial genomes in humans and other animals are strongly biased to light (L)-strand non-CpG methylation with conserved peak loci preferentially located at gene-gene boundaries, which was also independently validated by MeDIP and FspEI digestion. Such mtDNA methylation patterns are conserved across different species and developmental stages but display dynamic local or global changes during development and aging. Knockout of DNMT3A alone perturbed mtDNA regional methylation patterns, but not global levels, and altered mitochondrial gene expression, copy number, and oxygen respiration. Overexpression of DNMT3A strongly increased mtDNA methylation and strand bias. Overall, methylation at gene bodies and boundaries was negatively associated with mitochondrial transcript abundance and also polycistronic transcript processing. Furthermore, HPLC-MS confirmed the methylation signals on mitochondria DNA. Together, these data provide high-resolution mtDNA methylation maps that revealed a strand-specific non-CpG methylation, its dynamic regulation, and its impact on the polycistronic mitochondrial transcript processing.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA, Mitochondrial/genetics , Epigenome/genetics , Animals , CpG Islands/genetics , DNA Methyltransferase 3A , Gene Expression Regulation/genetics , Humans , Mitochondria/genetics
9.
Mol Cell ; 54(5): 879-86, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24813944

ABSTRACT

Methylated cytosine of CpG dinucleotides in vertebrates may be oxidized by Tet proteins, a process that can lead to DNA demethylation. The predominant oxidation product, 5-hydroxymethylcytosine (5hmC), has been implicated in embryogenesis, cell differentiation, and human diseases. Recently, the SRA domain of UHRF2 (UHRF2-SRA) has been reported to specifically recognize 5hmC, but how UHRF2 recognizes this modification is unclear. Here we report the structure of UHRF2-SRA in complex with a 5hmC-containing DNA. The structure reveals that the conformation of a phenylalanine allows the formation of an optimal 5hmC binding pocket, and a hydrogen bond between the hydroxyl group of 5hmC and UHRF2-SRA is critical for their preferential binding. Further structural and biochemical analyses unveiled the role of SRA domains as a versatile reader of modified DNA, and the knowledge should facilitate further understanding of the biological function of UHRF2 and the comprehension of DNA hydroxymethylation in general.


Subject(s)
Ubiquitin-Protein Ligases/chemistry , 5-Methylcytosine/analogs & derivatives , Binding Sites , Crystallography, X-Ray , Cytosine/analogs & derivatives , Cytosine/chemistry , Humans , Hydrogen Bonding , Models, Molecular , Oligonucleotides/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
10.
Mol Cell ; 55(4): 537-51, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25042802

ABSTRACT

Sox2 is a key factor for maintaining embryonic stem cell (ESS) pluripotency, but little is known about its posttranslational regulation. Here we present evidence that the precise level of Sox2 proteins in ESCs is regulated by a balanced methylation and phosphorylation switch. Set7 monomethylates Sox2 at K119, which inhibits Sox2 transcriptional activity and induces Sox2 ubiquitination and degradation. The E3 ligase WWP2 specifically interacts with K119-methylated Sox2 through its HECT domain to promote Sox2 ubiquitination. In contrast, AKT1 phosphorylates Sox2 at T118 and stabilizes Sox2 by antagonizing K119me by Set7 and vice versa. In mouse ESCs, AKT1 activity toward Sox2 is greater than that of Set7, leading to Sox2 stabilization and ESC maintenance. In early development, increased Set7 expression correlates with Sox2 downregulation and appropriate differentiation. Our study highlights the importance of a Sox2 methylation-phosphorylation switch in determining ESC fate.


Subject(s)
DNA Methylation/physiology , Embryonic Stem Cells/cytology , Histone-Lysine N-Methyltransferase/physiology , Lysine/metabolism , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/physiology , SOXB1 Transcription Factors/metabolism , Thymine/metabolism , Ubiquitin-Protein Ligases/physiology , Animals , Binding Sites/genetics , Binding Sites/physiology , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Mice , Protein Stability , SOXB1 Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
11.
Nucleic Acids Res ; 48(21): 12116-12134, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33170271

ABSTRACT

LSH, a SNF2 family DNA helicase, is a key regulator of DNA methylation in mammals. How LSH facilitates DNA methylation is not well defined. While previous studies with mouse embryonic stem cells (mESc) and fibroblasts (MEFs) derived from Lsh knockout mice have revealed a role of Lsh in de novo DNA methylation by Dnmt3a/3b, here we report that LSH contributes to DNA methylation in various cell lines primarily by promoting DNA methylation by DNMT1. We show that loss of LSH has a much bigger effect in DNA methylation than loss of DNMT3A and DNMT3B. Mechanistically, we demonstrate that LSH interacts with UHRF1 but not DNMT1 and facilitates UHRF1 chromatin association and UHRF1-catalyzed histone H3 ubiquitination in an ATPase activity-dependent manner, which in turn promotes DNMT1 recruitment to replication fork and DNA methylation. Notably, UHRF1 also enhances LSH association with the replication fork. Thus, our study identifies LSH as an essential factor for DNA methylation by DNMT1 and provides novel insight into how a feed-forward loop between LSH and UHRF1 facilitates DNMT1-mediated maintenance of DNA methylation in chromatin.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Helicases/genetics , DNA Methylation , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/genetics , Animals , CCAAT-Enhancer-Binding Proteins/antagonists & inhibitors , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , DNA Methyltransferase 3A , HCT116 Cells , HEK293 Cells , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Mice , NIH 3T3 Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , DNA Methyltransferase 3B
12.
Nucleic Acids Res ; 47(17): 9053-9068, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31400111

ABSTRACT

Faithful inheritance of DNA methylation across cell division requires DNMT1 and its accessory factor UHRF1. However, how this axis is regulated to ensure DNA methylation homeostasis remains poorly understood. Here we show that SET8, a cell-cycle-regulated protein methyltransferase, controls protein stability of both UHRF1 and DNMT1 through methylation-mediated, ubiquitin-dependent degradation and consequently prevents excessive DNA methylation. SET8 methylates UHRF1 at lysine 385 and this modification leads to ubiquitination and degradation of UHRF1. In contrast, LSD1 stabilizes both UHRF1 and DNMT1 by demethylation. Importantly, SET8 and LSD1 oppositely regulate global DNA methylation and do so most likely through regulating the level of UHRF1 than DNMT1. Finally, we show that UHRF1 downregulation in G2/M by SET8 has a role in suppressing DNMT1-mediated methylation on post-replicated DNA. Altogether, our study reveals a novel role of SET8 in promoting DNA methylation homeostasis and identifies UHRF1 as the hub for tuning DNA methylation through dynamic protein methylation.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Histone-Lysine N-Methyltransferase/metabolism , Ubiquitination , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Cell Cycle , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA Replication , HEK293 Cells , HeLa Cells , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Methylation , Mice , NIH 3T3 Cells , Protein Processing, Post-Translational , Protein Stability , Ubiquitin-Protein Ligases , DNA Methyltransferase 3B
13.
J Biol Chem ; 294(50): 19155-19166, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31694914

ABSTRACT

Ribosome biogenesis is critical for proliferating cells and requires the coordinated activities of three eukaryotic RNA polymerases. We recently showed that the small ubiquitin-like modifier (SUMO) system controls the global level of RNA polymerase II (Pol II)-controlled transcription in mammalian cells by regulating cyclin-dependent kinase 9 activity. Here, we present evidence that the SUMO system also plays a critical role in the control of Pol I transcription. Using an siRNA-based knockdown approach, we found that multiple SUMO E3 ligases of the PIAS (protein inhibitor of activated STAT) family are involved in SUMO-mediated repression of ribosomal DNA (rDNA) gene transcription. We demonstrate that endogenous SUMO represses rDNA transcription primarily by repressing upstream-binding factor and proto-oncogene c-Myc expression and that ectopic overexpression of SUMO-associated enzymes additionally represses rDNA transcription via c-Myc SUMOylation and its subsequent degradation. The results of our study reveal a critical role of SUMOylation in the control of rDNA transcription, uncover the underlying mechanisms involved, and indicate that the SUMO system coordinates Pol I- and Pol II-mediated transcription in mammalian cells.


Subject(s)
DNA, Ribosomal/genetics , Down-Regulation/genetics , Pol1 Transcription Initiation Complex Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , DNA, Ribosomal/metabolism , Gene Expression Profiling , HEK293 Cells , HeLa Cells , Humans , Pol1 Transcription Initiation Complex Proteins/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/metabolism , Sumoylation , Transcriptional Activation/genetics
14.
Int J Cancer ; 147(8): 2239-2252, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32372448

ABSTRACT

Intestinal tumors mainly originate from transformed crypt stem cells supported by Wnt signaling, which functions through downstream critical factors enriched in the intestinal stem/progenitor compartment. Here, we show Uhrf2 is predominantly expressed in intestinal crypts and adenomas in mice and is transcriptionally regulated by Wnt signaling. Upregulated UHRF2 correlates with poor prognosis in colorectal cancer patients. Although loss of Uhrf2 did not affect intestinal homeostasis and regeneration, tumor initiation and progression were inhibited, leading to a markedly prolonged life span in Uhrf2 null mice on an ApcMin background. Uhrf2 deficiency also strongly reduced primary tumor organoid formation suggesting impairment of tumor stem cells. Moreover, ablation of Uhrf2 suppressed tumor cell proliferation through downregulation of the Wnt/ß-catenin pathway. Mechanistically, Uhrf2 directly interacts with and sumoylates Tcf4, a critical intranuclear effector of the Wnt pathway. Uhrf2 mediated SUMOylation stabilized Tcf4 and further sustained hyperactive Wnt signaling. Together, we demonstrate that Wnt-induced Uhrf2 expression promotes tumorigenesis through modulation of the stability of Tcf4 for maintaining oncogenic Wnt/ß-catenin signaling. This is a new reciprocal feedforward regulation between Uhrf2 and Wnt signaling in tumor initiation and progression.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Transcription Factor 7-Like 2 Protein/genetics , Ubiquitin-Protein Ligases/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adenoma/genetics , Adenoma/pathology , Animals , Carcinogenesis/pathology , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/pathology , Oncogenes/genetics , Transcription, Genetic/genetics , Up-Regulation/genetics
15.
Proc Natl Acad Sci U S A ; 114(31): 8229-8234, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716910

ABSTRACT

Thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily that act as ligand-dependent transcription factors. Here we identified the ten-eleven translocation protein 3 (TET3) as a TR interacting protein increasing cell sensitivity to T3. The interaction between TET3 and TRs is independent of TET3 catalytic activity and specifically allows the stabilization of TRs on chromatin. We provide evidence that TET3 is required for TR stability, efficient binding of target genes, and transcriptional activation. Interestingly, the differential ability of different TRα1 mutants to interact with TET3 might explain their differential dominant activity in patients carrying TR germline mutations. So this study evidences a mode of action for TET3 as a nonclassical coregulator of TRs, modulating its stability and access to chromatin, rather than its intrinsic transcriptional activity. This regulatory function might be more general toward nuclear receptors. Indeed, TET3 interacts with different members of the superfamily and also enhances their association to chromatin.


Subject(s)
Chromatin/metabolism , Dioxygenases/metabolism , Thyroid Hormone Receptors alpha/metabolism , Catalytic Domain , Chromatin/genetics , Dioxygenases/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Immunoprecipitation , Mutation , Nitriles/pharmacology , Protein Interaction Domains and Motifs , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Thiazoles/pharmacology , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Transcription, Genetic , Ubiquitination
16.
Nucleic Acids Res ; 45(22): 12723-12738, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29040764

ABSTRACT

Transposable elements, including endogenous retroviruses (ERVs), constitute a large fraction of the mammalian genome. They are transcriptionally silenced during early development to protect genome integrity and aberrant transcription. However, the mechanisms that control their repression are not fully understood. To systematically study ERV repression, we carried out an RNAi screen in mouse embryonic stem cells (ESCs) and identified a list of novel regulators. Among them, Rif1 displays the strongest effect. Rif1 depletion by RNAi or gene deletion led to increased transcription and increased chromatin accessibility at ERV regions and their neighboring genes. This transcriptional de-repression becomes more severe when DNA methylation is lost. On the mechanistic level, Rif1 directly occupies ERVs and is required for repressive histone mark H3K9me3 and H3K27me3 assembly and DNA methylation. It interacts with histone methyltransferases and facilitates their recruitment to ERV regions. Importantly, Rif1 represses ERVs in human ESCs as well, and the evolutionally-conserved HEAT-like domain is essential for its function. Finally, Rif1 acts as a barrier during somatic cell reprogramming, and its depletion significantly enhances reprogramming efficiency. Together, our study uncovered many previously uncharacterized repressors of ERVs, and defined an essential role of Rif1 in the epigenetic defense against ERV activation.


Subject(s)
Chromatin/genetics , Endogenous Retroviruses/genetics , Telomere-Binding Proteins/genetics , Virus Activation , Animals , Cell Line , Cells, Cultured , Chromatin/metabolism , DNA Methylation , Embryonic Stem Cells/metabolism , Endogenous Retroviruses/physiology , HEK293 Cells , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Methylation , Mice , RNA Interference , Telomere-Binding Proteins/metabolism
17.
J Biol Chem ; 292(30): 12702-12712, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28588028

ABSTRACT

Lysine methylation of chromosomal and nuclear proteins is a well-known mechanism of epigenetic regulation, but relatively little is known about the role of this protein modification in signal transduction. Using an RNAi-based functional screening of the SMYD family of lysine methyltransferases (KMTs), we identified SMYD2 as a KMT essential for robust bone morphogenic protein (BMP)- but not TGFß-induced target gene expression in HaCaT keratinocyte cells. A role for SMYD2 in BMP-induced gene expression was confirmed by shRNA knockdown and CRISPR/Cas9-mediated knock-out of SMYD2 We further demonstrate that SMYD2 knockdown or knock-out impairs BMP-induced phosphorylation of the signal-transducing protein SMAD1/5 and SMAD1/5 nuclear localization and interaction with SMAD4. The SMYD2 KMT activity was required to facilitate BMP-mediated signal transduction, as treatment with the SMYD2 inhibitor AZ505 suppressed BMP2-induced SMAD1/5 phosphorylation. Furthermore, we present evidence that SMYD2 likely modulates the BMP response through its function in the cytosol. We show that, although SMYD2 interacted with multiple components in the BMP pathway, it specifically methylated the kinase domain of BMP type II receptor BMPR2. Taken together, our findings suggest that SMYD2 may promote BMP signaling by directly methylating BMPR2, which, in turn, stimulates BMPR2 kinase activity and activation of the BMP pathway.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/chemistry , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Signal Transduction , Cell Line , HEK293 Cells , Humans , Methylation , Protein Domains
18.
J Biol Chem ; 292(11): 4533-4543, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28115522

ABSTRACT

UHRF2 has been implicated as a novel regulator for both DNA methylation (5mC) and hydroxymethylation (5hmC), but its physiological function and role in DNA methylation/hydroxymethylation are unknown. Here we show that in mice, UHRF2 is more abundantly expressed in the brain and a few other tissues. Uhrf2 knock-out mice are viable and fertile and exhibit no gross defect. Although there is no significant change of DNA methylation, the Uhrf2 null mice exhibit a reduction of 5hmC in the brain, including the cortex and hippocampus. Furthermore, the Uhrf2 null mice exhibit a partial impairment in spatial memory acquisition and retention. Consistent with the phenotype, gene expression profiling uncovers a role for UHRF2 in regulating neuron-related gene expression. Finally, we provide evidence that UHRF2 binds 5hmC in cells but does not appear to affect the TET1 enzymatic activity. Together, our study supports UHRF2 as a bona fide 5hmC reader and further demonstrates a role for 5hmC in neuronal function.


Subject(s)
5-Methylcytosine/analogs & derivatives , Brain/physiology , DNA Methylation , Spatial Learning , Ubiquitin-Protein Ligases/metabolism , 5-Methylcytosine/analysis , 5-Methylcytosine/metabolism , Animals , Brain Chemistry , Cell Line , Female , Humans , Locomotion , Male , Memory , Mice , Mice, Knockout , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/genetics
19.
J Proteome Res ; 16(4): 1743-1752, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28234478

ABSTRACT

Lysine crotonylation on histones is a recently identified post-translational modification that has been demonstrated to associate with active promoters and to directly stimulate transcription. Given that crotonyl-CoA is essential for the acyl transfer reaction and it is a metabolic intermediate widely localized within the cell, we postulate that lysine crotonylation on nonhistone proteins could also widely exist. Using specific antibody enrichment followed by high-resolution mass spectrometry analysis, we identified hundreds of crotonylated proteins and lysine residues. Bioinformatics analysis reveals that crotonylated proteins are particularly enriched for nuclear proteins involved in RNA processing, nucleic acid metabolism, chromosome organization, and gene expression. Furthermore, we demonstrate that crotonylation regulates HDAC1 activity, expels HP1α from heterochromatin, and inhibits cell cycle progression through S-phase. Our data thus indicate that lysine crotonylation could occur in a large number of proteins and could have important regulatory roles in multiple nuclei-related cellular processes.


Subject(s)
Acyl Coenzyme A/metabolism , Cell Cycle Proteins/metabolism , Protein Processing, Post-Translational/genetics , Proteomics , Cell Cycle Proteins/isolation & purification , Chromobox Protein Homolog 5 , DNA Replication/genetics , HeLa Cells , Histones/metabolism , Humans , Lysine/metabolism , Mass Spectrometry/methods , Promoter Regions, Genetic
20.
J Biol Chem ; 291(38): 20125-35, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27489107

ABSTRACT

As a protein critical for DNA maintenance methylation and cell proliferation, UHRF1 is frequently highly expressed in various human cancers and is considered as a drug target for cancer therapy. In a high throughput screening for small molecules that induce UHRF1 protein degradation, we have identified the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). We present evidence that UHRF1 interacts with HSP90 chaperone complex and is a novel HSP90 client protein. Pharmacological inhibition of HSP90 with 17-AAG or 17-dimethylaminoethylamino-17-demethoxygeldanamycin results in UHRF1 ubiquitination and proteasome-dependent degradation. Interestingly, this HSP90 inhibitor-induced UHRF1 degradation is independent of CHIP and CUL5, two previously identified ubiquitin E3 ligases for HSP90 client proteins. In addition, this degradation is dependent neither on the intrinsic E3 ligase of UHRF1 nor on the E3 ligase SCF(ß-TRCP) that has been implicated in regulation of UHRF1 stability. We also provide evidence that HSP90 inhibitors may suppress cancer cell proliferation in part through its induced UHRF1 degradation. Taken together, our results identify UHRF1 as a novel HSP90 client protein and shed light on the regulation of UHRF1 stability and function.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitination , Animals , Benzoquinones/pharmacology , CCAAT-Enhancer-Binding Proteins/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Lactams, Macrocyclic/pharmacology , Mice , NIH 3T3 Cells , Nuclear Proteins/genetics , Protein Stability/drug effects , Proteolysis , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL