Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Genet ; 12(9): e1006275, 2016 09.
Article in English | MEDLINE | ID: mdl-27588687

ABSTRACT

The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development.


Subject(s)
Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Tetrahydrofolate Dehydrogenase/metabolism , Alleles , Bayes Theorem , Folic Acid Antagonists/therapeutic use , Humans , Methotrexate/therapeutic use , Mutation , Neoplasms/genetics , Tetrahydrofolate Dehydrogenase/genetics
2.
G3 (Bethesda) ; 7(4): 1251-1257, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28235825

ABSTRACT

Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.


Subject(s)
Drug Resistance, Fungal/genetics , Genome, Fungal , Methotrexate/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics , Drug Resistance, Fungal/drug effects , Genetic Complementation Test , Genetic Variation , Mutation , Reproducibility of Results , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL