Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834828

ABSTRACT

Age-related macular degeneration (AMD) is a blinding disease characterised by dysfunction of the retinal pigmented epithelium (RPE) which culminates in disruption or loss of the neurosensory retina. Genome-wide association studies have identified >60 genetic risk factors for AMD; however, the expression profile and functional role of many of these genes remain elusive in human RPE. To facilitate functional studies of AMD-associated genes, we developed a human RPE model with integrated CRISPR interference (CRISPRi) for gene repression by generating a stable ARPE19 cell line expressing dCas9-KRAB. We performed transcriptomic analysis of the human retina to prioritise AMD-associated genes and selected TMEM97 as a candidate gene for knockdown study. Using specific sgRNAs, we showed that knockdown of TMEM97 in ARPE19 reduced reactive oxygen species (ROS) levels and exerted a protective effect against oxidative stress-induced cell death. This work provides the first functional study of TMEM97 in RPE and supports a potential role of TMEM97 in AMD pathobiology. Our study highlights the potential for using CRISPRi to study AMD genetics, and the CRISPRi RPE platform generated here provided a useful in vitro tool for functional studies of AMD-associated genes.


Subject(s)
Genome-Wide Association Study , Macular Degeneration , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Oxidative Stress , Epithelium/metabolism
2.
Proc Natl Acad Sci U S A ; 114(39): E8214-E8223, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28878022

ABSTRACT

Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby's fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich "drusen-like" composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE-ECM interface.


Subject(s)
Bruch Membrane/pathology , Eye Diseases, Hereditary/pathology , Induced Pluripotent Stem Cells/cytology , Macular Degeneration/pathology , Retinal Drusen/pathology , Retinal Pigment Epithelium/cytology , Blindness/genetics , Blindness/pathology , Cells, Cultured , Collagen Type IV/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Humans , Optic Disk Drusen/congenital , Optic Disk Drusen/pathology , Retinal Pigment Epithelium/pathology , Tissue Inhibitor of Metalloproteinase-3/genetics
3.
Mol Vis ; 25: 174-182, 2019.
Article in English | MEDLINE | ID: mdl-30996586

ABSTRACT

Purpose: To evaluate the efficacy of using a CRISPR/Cas-mediated strategy to correct a common high-risk allele that is associated with age-related macular degeneration (AMD; rs1061170; NM_000186.3:c.1204T>C; NP_000177.2:p.His402Tyr) in the complement factor H (CFH) gene. Methods: A human embryonic kidney cell line (HEK293A) was engineered to contain the pathogenic risk variant for AMD (HEK293A-CFH). Several different base editor constructs (BE3, SaBE3, SaKKH-BE3, VQR-BE3, and Target-AID) and their respective single-guide RNA (sgRNA) expression cassettes targeting either the pathogenic risk variant allele in the CFH locus or the LacZ gene, as a negative control, were evaluated head-to-head for the incidence of a cytosine-to-thymine nucleotide correction. The base editor construct that showed appreciable editing activity was selected for further assessment in which the base-edited region was subjected to next-generation deep sequencing to quantify on-target and off-target editing efficacy. Results: The tandem use of the Target-AID base editor and its respective sgRNA demonstrated a base editing efficiency of facilitating a cytosine-to-thymine nucleotide correction in 21.5% of the total sequencing reads. Additionally, the incidence of insertions and deletions (indels) was detected in only 0.15% of the sequencing reads with virtually no off-target effects evident across the top 11 predicted off-target sites containing at least one cytosine in the activity window (n = 3, pooled amplicons). Conclusions: CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Base Sequence , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Complement Factor H/genetics , Complement Factor H/metabolism , Cytosine/metabolism , Gene Expression , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Lac Operon , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mutation , Plasmids/chemistry , Plasmids/metabolism , RNA, Guide, Kinetoplastida/metabolism , Thymine/metabolism
4.
Eur Heart J ; 37(33): 2586-90, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27106955

ABSTRACT

AIMS: We identified a novel homozygous truncating mutation in the gene encoding alpha kinase 3 (ALPK3) in a family presenting with paediatric cardiomyopathy. A recent study identified biallelic truncating mutations of ALPK3 in three unrelated families; therefore, there is strong genetic evidence that ALPK3 mutation causes cardiomyopathy. This study aimed to clarify the mutation mechanism and investigate the molecular and cellular pathogenesis underlying ALPK3-mediated cardiomyopathy. METHODS AND RESULTS: We performed detailed clinical and genetic analyses of a consanguineous family, identifying a new ALPK3 mutation (c.3792G>A, p.W1264X) which undergoes nonsense-mediated decay in ex vivo and in vivo tissues. Ultra-structural analysis of cardiomyocytes derived from patient-specific and human ESC-derived stem cell lines lacking ALPK3 revealed disordered sarcomeres and intercalated discs. Multi-electrode array analysis and calcium imaging demonstrated an extended field potential duration and abnormal calcium handling in mutant contractile cultures. CONCLUSIONS: This study validates the genetic evidence, suggesting that mutations in ALPK3 can cause familial cardiomyopathy and demonstrates loss of function as the underlying genetic mechanism. We show that ALPK3-deficient cardiomyocytes derived from pluripotent stem cell models recapitulate the ultrastructural and electrophysiological defects observed in vivo. Analysis of differentiated contractile cultures identified abnormal calcium handling as a potential feature of cardiomyocytes lacking ALPK3, providing functional insights into the molecular mechanisms underlying ALPK3-mediated cardiomyopathy.


Subject(s)
Myocytes, Cardiac , Calcium , Cardiomyopathies , Human Embryonic Stem Cells , Humans , Induced Pluripotent Stem Cells , Muscle Proteins , Protein Kinases
5.
Nat Commun ; 15(1): 6256, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048544

ABSTRACT

Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.


Subject(s)
Catechin , NAD , Neurons , Neuroprotective Agents , Nicotinamide-Nucleotide Adenylyltransferase , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , NAD/metabolism , Humans , Animals , Neurons/metabolism , Neurons/drug effects , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroprotective Agents/pharmacology , Male , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Female , Retina/metabolism , Retina/drug effects , Mice, Inbred C57BL , Rats , Disease Models, Animal , Genetic Therapy/methods
6.
Invest Ophthalmol Vis Sci ; 64(4): 32, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37099020

ABSTRACT

Purpose: Age is the main risk factor for age-related macular degeneration (AMD), a leading cause of blindness in the elderly, with limited therapeutic options. Methods: Here, we analyze the transcriptomic characteristics and cellular landscape of the aging retinas from controls and patients with AMD. Results: We identify the aging genes in the neural retina, which are associated with innate immune response and inflammation. Deconvolution analysis reveals that the estimated proportions of M2 macrophages are significantly increased with both age and AMD severity. Moreover, we find that proportions of Müller glia are significantly increased only with age but not with AMD severity. Several genes associated with both age and AMD severity, particularly C1s and MR1, are strong positively correlated with the proportions of Müller glia. Conclusions: Our studies expand the genetic and cellular landscape of AMD and provide avenues for further studies on the relationship between age and AMD.


Subject(s)
Macular Degeneration , Transcriptome , Humans , Aged , Retina , Macular Degeneration/genetics , Aging/genetics , Neuroglia
7.
ACS Appl Mater Interfaces ; 15(30): 35832-35846, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37489656

ABSTRACT

Biophysical and biochemical cues modulate mammalian cell behavior and phenotype simultaneously. Macrophages, indispensable cells in the innate immune system, respond to external threats such as bacterial infections and implanted devices, undergoing the classical M1 polarization to become a pro-inflammatory phenotype. In the study, lipopolysaccharide (LPS)-induced M1 polarization was examined using RAW264.7, THP-1, and primary human PBMCs on a family of artificial extracellular matrix (ECM), named colloidal self-assembled patterns (cSAPs). The results showed that cSAPs were biocompatible, which cannot induce M1 or M2 polarization. Interestingly, specific cSAPs (e.g., cSAP3) suppress the level of M1 polarization (i.e., reduced nitric oxide production, down-regulated gene expression of iNOS, IL-6, TNF-α, IL-1ß, and TLR4, and reduced proportion of CD11b+CD86+ cells). Transcriptome analysis showed that cell adhesion and cell-ECM interaction participated in the M1 polarization, and the mechano-sensitive genes such as PIEZO1 were down-regulated on the cSAP3. More interestingly, these genes were also down-regulated under LPS stimulation, indicating that cells became insensitive to the LPS. The abovementioned results indicate that the defined physicochemical cues can govern macrophage polarization. This study illustrates a potential surface design at biointerface, which is critical in tissue engineering and materiobiology. The outcome is also inspiring in ECM-mediated immune responses.


Subject(s)
Cues , Lipopolysaccharides , Animals , Humans , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Phenotype , Mammals/metabolism , Ion Channels/genetics
8.
Aging (Albany NY) ; 15(6): 1713-1733, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36795578

ABSTRACT

Genetic and epidemiologic studies have significantly advanced our understanding of the genetic factors contributing to age-related macular degeneration (AMD). In particular, recent expression quantitative trait loci (eQTL) studies have highlighted POLDIP2 as a significant gene that confers risk of developing AMD. However, the role of POLDIP2 in retinal cells such as retinal pigment epithelium (RPE) and how it contributes to AMD pathology are unknown. Here we report the generation of a stable human RPE cell line ARPE-19 with POLDIP2 knockout using CRISPR/Cas, providing an in vitro model to investigate the functions of POLDIP2. We conducted functional studies on the POLDIP2 knockout cell line and showed that it retained normal levels of cell proliferation, cell viability, phagocytosis and autophagy. Also, we performed RNA sequencing to profile the transcriptome of POLDIP2 knockout cells. Our results highlighted significant changes in genes involved in immune response, complement activation, oxidative damage and vascular development. We showed that loss of POLDIP2 caused a reduction in mitochondrial superoxide levels, which is consistent with the upregulation of the mitochondrial superoxide dismutase SOD2. In conclusion, this study demonstrates a novel link between POLDIP2 and SOD2 in ARPE-19, which supports a potential role of POLDIP2 in regulating oxidative stress in AMD pathology.


Subject(s)
Macular Degeneration , Superoxides , Humans , Superoxides/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Oxidative Stress/genetics , Retinal Pigment Epithelium/pathology , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Nuclear Proteins/metabolism
9.
Invest Ophthalmol Vis Sci ; 63(9): 26, 2022 08 02.
Article in English | MEDLINE | ID: mdl-36006018

ABSTRACT

Purpose: Previous studies that identify putative genes associated with diabetic retinopathy are only focusing on specific clinical stages, thus resulting genes are not necessarily reflective of disease progression. This study identified genes associated with the severity level of diabetic retinopathy using the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to profile immune and retinal cell landscape in progressive diabetic retinopathy using a machine learning deconvolution approach. Methods: This study used a published transcriptomic dataset (GSE160306) from macular regions of donors with different degrees of diabetic retinopathy (10 healthy controls, 10 cases of diabetes, 9 cases of nonproliferative diabetic retinopathy, and 10 cases of proliferative diabetic retinopathy or combined with diabetic macular edema). LRT and OLR models were applied to identify severity-associated genes. In addition, CIBERSORTx was used to estimate proportional changes of immune and retinal cells in progressive diabetic retinopathy. Results: By controlling for gender and age using LRT and OLR, 50 genes were identified to be significantly increased in expression with the severity of diabetic retinopathy. Functional enrichment analyses suggested these severity-associated genes are related to inflammation and immune responses. CCND1 and FCGR2B are further identified as key regulators to interact with many other severity-associated genes and are crucial to inflammation. Deconvolution analyses demonstrated that the proportions of memory B cells, M2 macrophages, and Müller glia were significantly increased with the progression of diabetic retinopathy. Conclusions: These findings demonstrate that deep analyses of transcriptomic data can advance our understanding of progressive ocular diseases, such as diabetic retinopathy, by applying LRT and OLR models as well as bulk gene expression deconvolution.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Diabetic Retinopathy/genetics , Disease Progression , Follow-Up Studies , Humans , Inflammation , Transcriptome
10.
Sci Rep ; 12(1): 9525, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680963

ABSTRACT

Bietti crystalline dystrophy (BCD) is an inherited retinal disease (IRD) caused by mutations in the CYP4V2 gene. It is a relatively common cause of IRD in east Asia. A number of features of this disease make it highly amenable to gene supplementation therapy. This study aims to validate a series of essential precursor in vitro experiments prior to developing a clinical gene therapy for BCD. We demonstrated that HEK293, ARPE19, and patient induced pluripotent stem cell (iPSC)-derived RPE cells transduced with AAV2 vectors encoding codon optimization of CYP4V2 (AAV2.coCYP4V2) resulted in elevated protein expression levels of CYP4V2 compared to those transduced with AAV2 vectors encoding wild type CYP4V2 (AAV2.wtCYP4V2), as assessed by immunocytochemistry and western blot. Similarly, we observed significantly increased CYP4V2 enzyme activity in cells transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. We also showed CYP4V2 expression in human RPE/choroid explants transduced with AAV2.coCYP4V2 compared to those transduced with AAV2.wtCYP4V2. These preclinical data support the further development of a gene supplementation therapy for a currently untreatable blinding condition-BCD. Codon-optimized CYP4V2 transgene was superior to wild type in terms of protein expression and enzyme activity. Ex vivo culture of human RPE cells provided an effective approach to test AAV-mediated transgene delivery.


Subject(s)
Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Genetic Therapy , Retinal Diseases , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Cytochrome P450 Family 4/genetics , DNA Mutational Analysis , HEK293 Cells , Humans , Mutation , Retinal Diseases/genetics , Retinal Diseases/therapy
11.
ACS Nano ; 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36583476

ABSTRACT

Direct neuronal reprogramming of somatic cells into induced neurons (iNs) has been recently established as a promising approach to generating neuron cells. Previous studies have reported that the biophysical cues of the in vitro microenvironment are potent modulators in the cell fate decision; thus, the present study explores the effects of a customized pattern (named colloidal self-assembled patterns, cSAPs) on iN generation from human fibroblasts using small molecules. The result revealed that the cSAP, composed of binary particles in a hexagonal-close-packed (hcp) geometry, is capable of improving neuronal reprogramming efficiency and steering the ratio of the iN subtypes. Cells exhibited distinct cell morphology, upregulated cell adhesion markers (i.e., SDC1 and ITGAV), enriched signaling pathways (i.e., Hippo and Wnt), and chromatin remodeling on the cSAP compared to those on the control substrates. The result also showed that the iN subtype specification on cSAP was surface-dependent; therefore, the defined physicochemical cue from each cSAP is exclusive. Our findings show that direct cell reprogramming can be manipulated through specific biophysical cues on the artificial matrix, which is significant in cell transdifferentiation and lineage conversion.

12.
Nucleic Acid Ther ; 32(4): 251-266, 2022 08.
Article in English | MEDLINE | ID: mdl-35363088

ABSTRACT

Retinal neovascularization is a severe complication of proliferative diabetic retinopathy (PDR). MicroRNAs (miRNAs) are master regulators of gene expression that play an important role in retinal neovascularization. In this study, we show that miR-143-3p is significantly downregulated in the retina of a rat model of oxygen-induced retinopathy (OIR) by miRNA-sequencing. Intravitreal injection of synthetic miR-143 mimics significantly ameliorate retinal neovascularization in OIR rats. miR-143 is identified to be highly expressed in the neural retina particularly in the ganglion cell layer and retinal vasculature. In miR-143 treated cells, the functional evaluation showed a decrease in cell migration and delayed endothelial vessel-like tube remodeling. The multiomics analysis suggests that miR-143 negatively impacts endothelial cell activity through regulating cell-matrix adhesion and mediating hypoxia-inducible factor-1 signaling. We predict hub genes regulated by miR-143 that may be involved in mediating endothelial cell function by cytoHubba. We also demonstrate that the retinal neovascular membranes in patients with PDR principally consist of endothelial cells by CIBERSORTx. We then identify 2 hub genes, thrombospondin 1 and plasminogen activator inhibitor, direct targets of miR-143, that significantly altered in the PDR patients. These findings suggest that miR-143 appears to be essential for limiting endothelial cell-matrix adhesion, thus suppressing retinal neovascularization.


Subject(s)
MicroRNAs , Retinal Neovascularization , Animals , Endothelial Cells/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Oxygen/adverse effects , Rats , Retina/metabolism , Retinal Neovascularization/therapy
13.
Nat Commun ; 12(1): 5675, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584087

ABSTRACT

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.


Subject(s)
Cell Differentiation/genetics , Retina/metabolism , Retinal Ganglion Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Animals , Gene Expression Profiling/methods , Humans , Middle Aged , Retina/cytology , Sequence Analysis, RNA/methods , Species Specificity , Swine
14.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32251516

ABSTRACT

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Subject(s)
Myocardial Infarction/surgery , Myocardium/pathology , Proteome , Regeneration , Secretome , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Antigens, Surface/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Culture Media, Conditioned/metabolism , Disease Models, Animal , Fibrosis , Humans , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Neovascularization, Physiologic , Proteomics , Rats, Nude , Stem Cell Transplantation/instrumentation , Time Factors
15.
Front Cell Neurosci ; 14: 570917, 2020.
Article in English | MEDLINE | ID: mdl-33132845

ABSTRACT

CRISPR/Cas has opened the prospect of direct gene correction therapy for some inherited retinal diseases. Previous work has demonstrated the utility of adeno-associated virus (AAV) mediated delivery to retinal cells in vivo; however, with the expanding repertoire of CRISPR/Cas endonucleases, it is not clear which of these are most efficacious for retinal editing in vivo. We sought to compare CRISPR/Cas endonuclease activity using both single and dual AAV delivery strategies for gene editing in retinal cells. Plasmids of a dual vector system with SpCas9, SaCas9, Cas12a, CjCas9 and a sgRNA targeting YFP, as well as a single vector system with SaCas9/YFP sgRNA were generated and validated in YFP-expressing HEK293A cell by flow cytometry and the T7E1 assay. Paired CRISPR/Cas endonuclease and its best performing sgRNA was then packaged into an AAV2 capsid derivative, AAV7m8, and injected intravitreally into CMV-Cre:Rosa26-YFP mice. SpCas9 and Cas12a achieved better knockout efficiency than SaCas9 and CjCas9. Moreover, no significant difference in YFP gene editing was found between single and dual CRISPR/SaCas9 vector systems. With a marked reduction of YFP-positive retinal cells, AAV7m8 delivered SpCas9 was found to have the highest knockout efficacy among all investigated endonucleases. We demonstrate that the AAV7m8-mediated delivery of CRISPR/SpCas9 construct achieves the most efficient gene modification in neurosensory retinal cells in vivo.

16.
Front Cell Neurosci ; 13: 147, 2019.
Article in English | MEDLINE | ID: mdl-31130844

ABSTRACT

[This corrects the article DOI: 10.3389/fncel.2018.00460.].

17.
Front Cell Neurosci ; 13: 527, 2019.
Article in English | MEDLINE | ID: mdl-31849614

ABSTRACT

Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.

18.
Mol Ther Nucleic Acids ; 14: 184-191, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30594894

ABSTRACT

Gain-of-function studies often require the tedious cloning of transgene cDNA into vectors for overexpression beyond the physiological expression levels. The rapid development of CRISPR/Cas technology presents promising opportunities to address these issues. Here, we report a simple, cloning-free method to induce gene expression at an endogenous locus using CRISPR/Cas9 activators. Our strategy utilizes synthesized sgRNA expression cassettes to direct a nuclease-null Cas9 complex fused with transcriptional activators (VP64, p65, and Rta) for site-specific induction of endogenous genes. This strategy allows rapid initiation of gain-of-function studies in the same day. Using this approach, we tested two CRISPR activation systems, dSpCas9VPR and dSaCas9VPR, for induction of multiple genes in human and rat cells. Our results showed that both CRISPR activators allow efficient induction of six different neural development genes (CRX, RORB, RAX, OTX2, ASCL1, and NEUROD1) in human cells, whereas the rat cells exhibit more variable and less-efficient levels of gene induction, as observed in three different genes (Ascl1, Neurod1, Nrl). Altogether, this study provides a simple method to efficiently activate endogenous gene expression using CRISPR/Cas9 activators, which can be applied as a rapid workflow to initiate gain-of-function studies for a range of molecular- and cell-biology disciplines.

19.
Hum Gene Ther ; 30(11): 1349-1360, 2019 11.
Article in English | MEDLINE | ID: mdl-31373227

ABSTRACT

Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the widespread application of in vivo genome editing. We previously reported the utility of adeno-associated virus (AAV)-mediated CRISPR/Cas genome editing in the retina; however, with this type of viral delivery system, active endonucleases will remain in the retina for an extended period, making genotoxicity a significant consideration in clinical applications. To address this issue, we have designed a self-destructing "kamikaze" CRISPR/Cas system that disrupts the Cas enzyme itself following expression. Four guide RNAs (sgRNAs) were initially designed to target Streptococcus pyogenes Cas9 (SpCas9) and after in situ validation, the selected sgRNAs were cloned into a dual AAV vector. One construct was used to deliver SpCas9 and the other delivered sgRNAs directed against SpCas9 and the target locus (yellow fluorescent protein [YFP]), in the presence of mCherry. Both constructs were packaged into AAV2 vectors and intravitreally administered in C57BL/6 and Thy1-YFP transgenic mice. After 8 weeks, the expression of SpCas9 and the efficacy of YFP gene disruption were quantified. A reduction of SpCas9 mRNA was found in retinas treated with AAV2-mediated YFP/SpCas9 targeting CRISPR/Cas compared with those treated with YFP targeting CRISPR/Cas alone. We also show that AAV2-mediated delivery of YFP/SpCas9 targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-expressing cells (∼85.5% reduction compared with LacZ/SpCas9 targeting CRISPR/Cas) in the transfected retina of Thy1-YFP transgenic mice. In conclusion, our data suggest that a self-destructive "kamikaze" CRISPR/Cas system can be used as a robust tool for genome editing in the retina, without compromising on-target efficiency.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Retina/metabolism , Animals , Base Sequence , Electroretinography , Gene Transfer Techniques , HEK293 Cells , Humans , Mice, Inbred C57BL , RNA, Guide, Kinetoplastida/genetics , Reproducibility of Results , Retina/physiology , Tomography, Optical Coherence
20.
Methods Mol Biol ; 1697: 133-140, 2018.
Article in English | MEDLINE | ID: mdl-28324485

ABSTRACT

Human embryonic stem cells (hESCs) have historically been cultivated on feeder layers of primary mouse embryonic fibroblasts (MEF) in a medium supplemented with fetal calf serum (FCS). However, serum contains a wide variety of biologically active compounds that might adversely affect hESC growth and differentiation. Thus, cultivation of stem cells in FCS complicates experimental approaches to define the intracellular mechanisms required for hESC maintenance. This chapter describes the serum-free maintenance of hESCs in culture by addition of sphingosine-1-phosphate (S1P) and platelet-derived growth factor (PDGF). This complete protocol provides a simple alternative chemically defined serum-free system that is relatively inexpensive and advantageous for studying signaling pathways involved in hESC pluripotency.


Subject(s)
Cell Culture Techniques/methods , Human Embryonic Stem Cells/cytology , Lysophospholipids/pharmacology , Platelet-Derived Growth Factor/pharmacology , Sphingosine/analogs & derivatives , Cells, Cultured , Culture Media, Serum-Free/pharmacology , Human Embryonic Stem Cells/drug effects , Humans , Sphingosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL