Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Poult Sci ; 102(10): 102993, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37611453

ABSTRACT

Heavy selection for growth in turkeys has led to a decay in leg soundness and walking ability. In this study, different models and traits were used to investigate the genetic relationships between body weight (BW) and walking ability (WA) in a turkey population. The data consisted of BW and WA traits collected on 276,059 male birds. Body weight was measured at 12 and 20 wk and WA at 20 wk of age. For WA, birds were scored based on a 1 (bad) to 6 (good) grading system. Due to the small number of records with scores 5 and 6, birds with WA scores of 4, 5, and 6 were grouped together resulting in only 4 classes. Additionally, a binary classification of WA (scores 1 and 2 = Similarly, an estimate of the genetic correlation between WA and BW at 20 wk was -0.45, indicating a more pronounced class 1; scores 3, 4, 5, and 6 = class 2) was evaluated. The inheritability estimates of WA ranged between 0.25 and 0.27 depending on the number of classes. The Heritability of BW at 12 and 20 wk was 0.44 and 0.51, respectively. The genetic correlation between WA and BW at 12 wk was around -0.35, indicating that heavy birds tend to have poor WA. antagonistic relationship between BW and WA. The genetic correlation between BW at 12 and 20 wk was positive and high (0.80). The residual correlation between WA and BW at 12 and 20 wk of age was -0.07 and -0.02, respectively. The residual correlation between body weight traits was 0.57. Similar results were observed when a binary classification was adopted for WA. The probability of an individual with a given genetic merit expressing a certain class of WA was determined for different fixed effect designations. Predictive probabilities clearly showed that birds when hatched in the winter would have a small chance to exhibit good WA phenotypes.


Subject(s)
Chickens , Turkeys , Male , Animals , Turkeys/physiology , Body Weight/genetics , Linear Models , Walking
2.
Poult Sci ; 100(11): 101366, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34525446

ABSTRACT

The detrimental effects of increased homozygosity due to inbreeding have prompted the development of methods to reduce inbreeding. The detection of runs of homozygosity (ROH), or contiguous stretches of homozygous marker genotypes, can be used to describe and quantify the level of inbreeding in an individual. The estimation of inbreeding coefficients can be calculated based on pedigree information, ROH, or the genomic relationship matrix. The aim of this study was to detect and describe ROH in the turkey genome and compare estimates of pedigree-based inbreeding coefficients (FPED) with genomic-based inbreeding coefficients estimated from ROH (FROH) and the genomic relationship matrix (FGRM). A total of 2,616,890 pedigree records were available. Of these records, 6,371 genotyped animals from three purebred turkey (Meleagris gallopavo) lines between 2013 and 2019 were available, and these were obtained using a dense single nucleotide polymorphism array (56,452 SNPs). The overall mean length of detected ROH was 2.87 ± 0.29 Mb with a mean number of 84.87 ± 8.79 ROH per animal. Short ROH with lengths of 1 to 2 Mb long were the most abundant throughout the genome. Mean ROH coverage differed greatly between chromosomes and lines. Considering inbreeding coefficient means across all lines, genomic derived inbreeding coefficients (FROH = 0.27; FGRM = 0.32) were higher than coefficients estimated from pedigree records (FPED = 0.14). Correlations between FROH and FPED, FROH and FGRM, and FPED and FGRM ranged between 0.19 to 0.31, 0.68 to 0.73, and 0.17 to 0.30, respectively. Additionally, correlations between FROH from different lengths and FPED substantially increased with ROH length from -0.06 to 0.33. Results of the current research, including the distribution of ROH throughout the genome and ROH-derived inbreeding estimates, can provide a more comprehensive description of inbreeding in the turkey genome. This knowledge can be used to evaluate genetic diversity, a requirement for genetic improvement, and develop methods to minimize inbreeding in turkey breeding programs.


Subject(s)
Inbreeding , Animals , Genome , Genotype , Homozygote , Polymorphism, Single Nucleotide , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL