Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(4): 795-806.e12, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398337

ABSTRACT

Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition in PDAC patients with short-term survival (STS) and long-term survival (LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an intra-tumoral microbiome signature (Pseudoxanthomonas-Streptomyces-Saccharopolyspora-Bacillus clausii) highly predictive of long-term survivorship in both discovery and validation cohorts. Through human-into-mice fecal microbiota transplantation (FMT) experiments from STS, LTS, or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC microbiome composition, which cross-talks to the gut microbiome, influences the host immune response and natural history of the disease.


Subject(s)
Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/mortality , Gastrointestinal Microbiome , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/mortality , Adult , Aged , Animals , Bacteria/classification , Cell Line, Tumor , Cohort Studies , Fecal Microbiota Transplantation , Feces/microbiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Survival Rate
2.
Cell ; 161(6): 1345-60, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004068

ABSTRACT

For the majority of patients with pancreas cancer, the high metastatic proclivity is life limiting. Some patients, however, present with and succumb to locally destructive disease. A molecular understanding of these distinct disease manifestations can critically inform patient management. Using genetically engineered mouse models, we show that heterozygous mutation of Dpc4/Smad4 attenuates the metastatic potential of Kras(G12D/+);Trp53(R172H/+) pancreatic ductal adenocarcinomas while increasing their proliferation. Subsequent loss of heterozygosity of Dpc4 restores metastatic competency while further unleashing proliferation, creating a highly lethal combination. Expression levels of Runx3 respond to and combine with Dpc4 status to coordinately regulate the balance between cancer cell division and dissemination. Thus, Runx3 serves as both a tumor suppressor and promoter in slowing proliferation while orchestrating a metastatic program to stimulate cell migration, invasion, and secretion of proteins that favor distant colonization. These findings suggest a model to anticipate likely disease behaviors in patients and tailor treatment strategies accordingly.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Neoplasm Metastasis/genetics , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Genes, p53 , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics
3.
Nature ; 629(8012): 679-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38693266

ABSTRACT

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Subject(s)
Genetic Heterogeneity , Genomics , Imaging, Three-Dimensional , Pancreatic Neoplasms , Precancerous Conditions , Single-Cell Analysis , Adult , Female , Humans , Male , Clone Cells/metabolism , Clone Cells/pathology , Exome Sequencing , Machine Learning , Mutation , Pancreas/anatomy & histology , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Workflow , Disease Progression , Early Detection of Cancer , Oncogenes/genetics
4.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848578

ABSTRACT

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Subject(s)
Pancreatic Neoplasms , Precancerous Conditions , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms/genetics , Pancreas , Metaplasia , Mice, Knockout
5.
Nat Methods ; 19(11): 1490-1499, 2022 11.
Article in English | MEDLINE | ID: mdl-36280719

ABSTRACT

A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.


Subject(s)
Imaging, Three-Dimensional , Pancreatic Neoplasms , Humans , Imaging, Three-Dimensional/methods , Pancreatic Neoplasms/pathology , Pancreas/pathology
6.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28698299

ABSTRACT

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Subject(s)
Cell Transformation, Neoplastic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Pancreatic Ductal/physiopathology , Cells, Cultured , DNA Repair/genetics , Fibroblasts/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Mice
7.
Mod Pathol ; : 100554, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950698

ABSTRACT

Intraductal oncocytic papillary neoplasm (IOPN) of the pancreas is a recently recognized pancreatic tumor. Here, we aimed to determine the most essential features with the systematic review tool. PubMed, SCOPUS, and Embase were searched for studies reporting data on pancreatic IOPN. The clinicopathological, immunohistochemical, and molecular data were extracted and summarized. Then, a comparative analysis of the molecular alterations of IOPN with those of pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasm from reference cohorts (including The Cancer Genome Atlas) was conducted. The key findings from 414 IOPNs were as follows: 1) Clinicopathological Features: Male-to-female ratio was 1,5:1. Pancreatic head was the most common site (131/237, 55.3%), but a diffuse tumor extension involving more than one pancreatic segment was described in about 1/5 of cases (49/237, 20.6%). The mean size was 45.5 mm. An associated invasive carcinoma was present in 50% of cases (168/336). In those cases, most tumors were pT1/pT2 and pN0 (>80%), and vascular invasion was uncommon (20.6%). Regarding survival, more than 90% of patients were alive after surgical resection. 2) Immunohistochemical and Molecular Features: The most expressed mucins were MUC5AC (110/112, 98.2%) and MUC6 (78/84, 92.8%). Compared with pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasm, the classic pancreatic drivers KRAS, TP53, CDKN2A, SMAD4, and GNAS were less altered in IOPN (p<0.01). Moreover, fusions involving PRKACA or PRKACB genes were detected in all of 68 cases examined, with PRKACB::ATP1B1 as the most common (27/68 cases, 39.7%). These genomic events emerged as an entity-defining molecular alteration of IOPN (p<0.01). Thus, such fusions represent a promising biomarker for diagnostic purposes. Recent evidence also suggests their role in influencing the acquisition of oncocytic morphology. IOPN is a distinct pancreatic neoplasm with specific clinicopathological and molecular features. Considering the clinical/prognostic implications, its recognition is essential for pathologists and, ultimately, patients' management.

8.
Pancreatology ; 24(2): 255-270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38182527

ABSTRACT

This study group aimed to revise the 2017 international consensus guidelines for the management of intraductal papillary mucinous neoplasm (IPMN) of the pancreas, and mainly focused on five topics; the revision of high-risk stigmata (HRS) and worrisome features (WF), surveillance of non-resected IPMN, surveillance after resection of IPMN, revision of pathological aspects, and investigation of molecular markers in cyst fluid. A new development from the prior guidelines is that systematic reviews were performed for each one of these topics, and published separately to provide evidence-based recommendations. One of the highlights of these new "evidence-based guidelines" is to propose a new management algorithm, and one major revision is to include into the assessment of HRS and WF the imaging findings from endoscopic ultrasound (EUS) and the results of cytological analysis from EUS-guided fine needle aspiration technique, when this is performed. Another key element of the current guidelines is to clarify whether lifetime surveillance for small IPMNs is required, and recommends two options, "stop surveillance" or "continue surveillance for possible development of concomitant pancreatic ductal adenocarcinoma", for small unchanged BD-IPMN after 5 years surveillance. Several other points are also discussed, including identifying high-risk features for recurrence in patients who underwent resection of non-invasive IPMN with negative surgical margin, summaries of the recent observations in the pathology of IPMN. In addition, the emerging role of cyst fluid markers that can aid in distinguishing IPMN from other pancreatic cysts and identify those IPMNs that harbor high-grade dysplasia or invasive carcinoma is discussed.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Pancreatic Intraductal Neoplasms/diagnosis , Pancreatic Intraductal Neoplasms/surgery , Pancreas , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Endosonography , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery
9.
J Pathol ; 260(4): 455-464, 2023 08.
Article in English | MEDLINE | ID: mdl-37345735

ABSTRACT

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma, Mucinous , Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Adenocarcinoma, Mucinous/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Pancreatic Neoplasms
10.
Gastroenterology ; 163(2): 386-402.e1, 2022 08.
Article in English | MEDLINE | ID: mdl-35398344

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/therapy , Early Detection of Cancer , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Pancreatic Neoplasms
11.
Mod Pathol ; 36(3): 100082, 2023 03.
Article in English | MEDLINE | ID: mdl-36788099

ABSTRACT

Although venous invasion (VI) is common in colorectal cancers (CRCs) and is associated with distant metastasis, the 3-dimensional (3D) microscopic features and associated mechanisms of VI are not well elucidated. To characterize the patterns of VI, 103 tissue slabs were harvested from surgically resected CRCs with ≥pT2. They were cleared using the modified immunolabeling-enabled 3D imaging of solvent-cleared organs method, labeled with multicolor fluorescent antibodies, including antibodies against cytokeratin 19, desmin, CD31, and E-cadherin, and visualized by confocal laser scanning microscopy. VI was classified as intravasation, intraluminal growth, and/or extravasation, and 2-dimensional and 3D microscopic features were compared. VI was detected more frequently in 3D (56/103 [54.4%]) than in conventional 2-dimensional hematoxylin and eosin-stained slides (33/103 [32%]; P < .001). When VI was present, it was most commonly in the form of intraluminal growth (51/56), followed by extravasation (13/56) and intravasation (5/56). The mean length of intraluminal growth was 334.0 ± 212.4 µm. Neoplastic cell projections extended from cancer cell clusters in the connective tissue surrounding veins, penetrated the smooth muscle layer, and then grew into and filled the venous lumen. E-cadherin expression changed at each invasion phase; intact E-cadherin expression was observed in the cancer cells in the venous walls, but its expression was lost in small clusters of intraluminal neoplastic cells. In addition, reexpression of E-cadherin was observed when cancer cells formed well-oriented tubular structures and accumulated and grew along the luminal side of the venous wall. In contrast, singly scattered cancer cells and cancer cells with poorly defined tubular structures showed loss of E-cadherin expression. E-cadherin expression was intact in the large cohesive clusters of extravasated cancer cells. However, singly scattered cells and smaller projections of neoplastic cells in the stroma outward of venous wall showed a loss of E-cadherin expression. In conclusion, VI was observed in more than half of the CRCs analyzed by 3D histopathologic image reconstruction. Once inside a vein, neoplastic cells can grow intraluminally. The epithelial-mesenchymal transition is not maintained during VI of CRCs.


Subject(s)
Cadherins , Colorectal Neoplasms , Humans , Cadherins/metabolism , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology
12.
Bioinformatics ; 38(15): 3677-3683, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35642899

ABSTRACT

MOTIVATION: Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. RESULTS: We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6-12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. AVAILABILITY AND IMPLEMENTATION: https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Humans , Bayes Theorem , Cross-Sectional Studies , Neoplasms/genetics , Sequence Analysis , Mutation , Clone Cells , Phylogeny , Software
13.
Pancreatology ; 23(7): 868-877, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37230894

ABSTRACT

BACKGROUND: Mucinous pancreatic cysts harbor the potential to progress to highly lethal pancreatic ductal adenocarcinoma (PDAC). Since these precursor cysts require cancer surveillance or surgical resection, they need to be reliably distinguished from harmless pancreatic cysts. Current clinical and radiographic assessment is imperfect and the value of cyst fluid analysis for differential diagnosis is unclear. Therefore, we set out to investigate the value of cyst fluid biomarkers in distinguishing pancreatic cysts. METHODS: We performed a systematic review of the current literature to identify articles that evaluated the diagnostic performance of clinically relevant and promising candidate cyst fluid biomarkers, with a particular emphasis on DNA-based biomarkers. Meta-analysis was performed for biomarkers targeted at identifying cyst type and presence of high-grade dysplasia or PDAC. RESULTS: Data from a total of 42 studies was analyzed. Mutations in KRAS and/or GNAS allowed identification of mucinous cysts with a sensitivity of 79% and specificity of 98%. This exceeded the performance of the traditional biomarker carcinoembryonic antigen (CEA; sensitivity 58%, specificity 87%). Mutations in VHL were specific for serous cystadenomas (SCAs; sensitivity 56%, specificity 99%) and help to exclude mucinous cysts. Mutations in CDKN2A, PIK3CA, SMAD4, and TP53 each had high specificities of 97%, 97%, 98%, and 95%, respectively, to identify high-grade dysplasia or PDAC in mucinous cysts. CONCLUSIONS: Cyst fluid analysis can be a valuable tool in the characterization of pancreatic cysts, with relevant clinical implications. Our results support the use of DNA-based cyst fluid biomarkers in the multidisciplinary diagnostic work-up of pancreatic cysts.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Cyst , Pancreatic Neoplasms , Humans , Cyst Fluid/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoembryonic Antigen/analysis , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Cyst/diagnosis , Pancreatic Cyst/genetics , Pancreatic Cyst/pathology , DNA , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Pancreatic Neoplasms
14.
Pancreatology ; 23(7): 878-891, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604731

ABSTRACT

BACKGROUND: Intraductal papillary mucinous neoplasms (IPMNs) are a cystic precursor to pancreatic cancer. IPMNs deemed clinically to be at high-risk for malignant progression are frequently treated with surgical resection, and pathological examination of the pancreatectomy specimen is a key component of the clinical care of IPMN patients. METHODS: Systematic literature reviews were conducted around eight topics of clinical relevance in the examination of pathological specimens in patients undergoing resection of IPMN. RESULTS: This review provides updated perspectives on morphological subtyping of IPMNs, classification of intraductal oncocytic papillary neoplasms, nomenclature for high-grade dysplasia, assessment of T stage, distinction of carcinoma associated or concomitant with IPMN, role of molecular assessment of IPMN tissue, role of intraoperative assessment by frozen section, and preoperative evaluation of cyst fluid cytology. CONCLUSIONS: This analysis provides the foundation for data-driven approaches to several challenging issues in the pathology of IPMNs.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Adenocarcinoma, Mucinous/pathology , Retrospective Studies , Pancreatic Neoplasms/pathology
15.
Nature ; 542(7641): 362-366, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28178232

ABSTRACT

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Subject(s)
Mesoderm/pathology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Endoplasmic Reticulum Stress/genetics , Female , Genes, myc , Genes, ras , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System , Male , Mesoderm/metabolism , Mice , Mosaicism , Oncogene Protein p55(v-myc)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , SMARCB1 Protein/deficiency , SMARCB1 Protein/metabolism , Transcriptome/genetics , Gemcitabine
16.
Cancer Metastasis Rev ; 40(3): 661-674, 2021 09.
Article in English | MEDLINE | ID: mdl-33555482

ABSTRACT

One way to understand ductal adenocarcinoma of the pancreas (pancreatic cancer) is to view it as unimaginably large numbers of evolving living organisms interacting with their environment. This "evolutionary view" creates both expected and surprising perspectives in all stages of neoplastic progression. Advances in the field will require greater attention to this critical evolutionary prospective.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Humans , Pancreas , Pancreatic Neoplasms/genetics , Prospective Studies
17.
Ann Surg ; 275(6): 1165-1174, 2022 06 01.
Article in English | MEDLINE | ID: mdl-33214420

ABSTRACT

OBJECTIVE: This study aimed to identify risk factors for recurrence after pancreatic resection for intraductal papillary mucinous neoplasm (IPMN). SUMMARY BACKGROUND DATA: Long-term follow-up data on recurrence after surgical resection for IPMN are currently lacking. Previous studies have presented mixed results on the role of margin status in risk of recurrence after surgical resection. METHODS: A total of 126 patients that underwent resection for noninvasive IPMN were followed for a median of 9.5 years. Dedicated pathological and radiological reviews were performed to correlate clinical and pathological features (including detailed pathological features of the parenchymal margin) with recurrence after surgical resection. In addition, in a subset of 32 patients with positive margins, we determined the relationship between the margin and original IPMN using driver gene mutations identified by next-generation sequencing. RESULTS: Family history of pancreatic cancer and high-grade IPMN was identified as risk factors for recurrence in both uni- and multivariate analysis (adjusted hazard ratio 3.05 and 1.88, respectively). Although positive margin was not significantly associated with recurrence in our cohort, the size and grade of the dysplastic focus at the margin were significantly correlated with recurrence in margin-positive patients. Genetic analyses showed that the neoplastic epithelium at the margin was independent from the original IPMN in at least 9 of 32 cases (28%). The majority of recurrences (74%) occurred after 3 years, and a significant minority (32%) occurred after 5 years. CONCLUSION: Sustained postoperative surveillance for all patients is indicated, particularly those with risk factors such has family history and high-grade dysplasia.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , Carcinoma, Papillary , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/surgery , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Papillary/pathology , Carcinoma, Papillary/surgery , Follow-Up Studies , Humans , Margins of Excision , Neoplasm Recurrence, Local/pathology , Pancreatectomy/methods , Pancreatic Intraductal Neoplasms/genetics , Pancreatic Intraductal Neoplasms/surgery , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Retrospective Studies
18.
J Pathol ; 254(4): 395-404, 2021 07.
Article in English | MEDLINE | ID: mdl-33886125

ABSTRACT

The use of three-dimensional (3D) culture models for cancer research has expanded greatly in recent years, with studies in almost every tumor type addressing a wide variety of research questions. Multiple distinct 3D culture approaches are now available, each with its own advantages and disadvantages, as well as most effective applications. In this review, we focus on one of these 3D culture models, organoids, in which multicellular units are isolated from primary or metastatic tumors and cultured in extracellular matrix gels. Organoids can be studied in acute cultures for short times after isolation, or passaged and biobanked for long-term use. We define this model system and describe some key studies in which organoid culture models were used to investigate cellular strategies and molecular mechanisms driving cancer initiation and progression, highlighting research questions for which this model is particularly well suited. In addition, as interest in implementing organoid systems continues to expand, we discuss key considerations in developing a new organoid research program. Our goal is to demonstrate the power and utility of organoid models and provide guidance for investigators who are considering implementation of these models in their own research programs. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cell Culture Techniques/methods , Neoplasms , Organoids , Animals , Humans , Pathologists
19.
J Pathol ; 254(3): 279-288, 2021 07.
Article in English | MEDLINE | ID: mdl-33870509

ABSTRACT

Epigenetic alterations are increasingly recognized as important contributors to the development and progression of pancreatic ductal adenocarcinoma. 5-hydroxymethylcytosine (5hmC) is an epigenetic DNA mark generated through the ten-eleven translocation (TET) enzyme-mediated pathway and is closely linked to gene activation. However, the timing of alterations in epigenetic regulation in the progression of pancreatic neoplasia is not well understood. In this study, we hypothesized that aberrant expression of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and subsequent global 5hmC alteration are linked to early tumorigenesis in the pancreas. Therefore, we evaluated alterations of 5hmC and TET1 levels using immunohistochemistry in pancreatic neoplasms (n = 380) and normal ducts (n = 118). The study cohort included representation of the full spectrum of precancerous lesions from low- and high-grade pancreatic intraepithelial neoplasia (n = 95), intraductal papillary mucinous neoplasms (all subtypes, n = 129), intraductal oncocytic papillary neoplasms (n = 12), and mucinous cystic neoplasms (n = 144). 5hmC and TET1 were significantly downregulated in all types of precancerous lesion and associated invasive pancreatic ductal adenocarcinomas compared with normal ductal epithelium (all p < 0.001), and expression of 5hmC positively correlated with expression of TET1. Importantly, downregulation of both 5hmC and TET1 was observed in most low-grade precancerous lesions. There were no clear associations between 5hmC levels and clinicopathological factors, thereby suggesting a common epigenetic abnormality across precancerous lesions. We conclude that downregulation of 5hmC and TET1 is an early event in pancreatic tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
5-Methylcytosine/analogs & derivatives , Carcinogenesis/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Regulation, Neoplastic/physiology , Pancreatic Neoplasms/metabolism , 5-Methylcytosine/metabolism , Adult , Aged , Aged, 80 and over , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/pathology , Down-Regulation , Epigenesis, Genetic , Female , Humans , Male , Middle Aged , Mixed Function Oxygenases/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism
20.
Gut ; 70(1): 148-156, 2021 01.
Article in English | MEDLINE | ID: mdl-32350089

ABSTRACT

OBJECTIVE: Recently, tumours with microsatellite instability (MSI)/defective DNA mismatch repair (dMMR) have gained considerable interest due to the success of immunotherapy in this molecular setting. Here, we aim to clarify clinical-pathological and/or molecular features of this tumour subgroup through a systematic review coupled with a comparative analysis with existing databases, also providing indications for a correct approach to the clinical identification of MSI/dMMR pancreatic ductal adenocarcinoma (PDAC). DESIGN: PubMed, SCOPUS and Embase were searched for studies reporting data on MSI/dMMR in PDAC up to 30 November 2019. Histological and molecular data of MSI/dMMR PDAC were compared with non-MSI/dMMR PDAC and with PDAC reference cohorts (including SEER database and The Cancer Genome Atlas Research Network - TCGA project). RESULTS: Overall, 34 studies with 8323 patients with PDAC were included in the systematic review. MSI/dMMR demonstrated a very low prevalence in PDAC (around 1%-2%). Compared with conventional PDAC, MSI/dMMR PDAC resulted strongly associated with medullary and mucinous/colloid histology (p<0.01) and with a KRAS/TP53 wild-type molecular background (p<0.01), with more common JAK genes mutations. Data on survival are still unclear. CONCLUSION: PDAC showing typical medullary or mucinous/colloid histology should be routinely examined for MSI/dMMR status using specific tests (immunohistochemistry, followed by MSI-PCR in cases with doubtful results). Next-generation sequencing (NGS) should be adopted either where there is limited tissue or as part of NGS tumour profiling in the context of precision oncology, acknowledging that conventional histology of PDAC may rarely harbour MSI/dMMR.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Microsatellite Instability , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/therapy , Databases, Factual , Humans , Pancreatic Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL