Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cytokine ; 162: 156109, 2023 02.
Article in English | MEDLINE | ID: mdl-36529029

ABSTRACT

The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates pathogen-induced immune responses via activation of the MyD88-dependent TLR signaling pathway. In the current study, the frequencies of IRF5+ DCs and the association with innate cytokine responses in SARS-CoV-2 infected individuals with different disease courses were investigated. In addition to a decreased number of mDC and pDC subsets, we could show reduced relative IRF5+ frequencies in mDCs of SARS-CoV-2 infected individuals compared with healthy donors. Functionally, mDCs of COVID-19 patients produced lower levels of IL-6 in response to in vitro TLR7 stimulation. IRF5+ mDCs more frequently produced IL-6 and TNF-α compared to their IRF5- counterparts upon TLR7 ligation. The correlation of IRF5+ mDCs with the frequencies of IL-6 and TNF-α producing mDCs were indicators for a role of IRF5 in the regulation of cytokine responses in mDCs. In conclusion, our data provide further insights into the underlying mechanisms of TLR7-dependent immune dysfunction and identify IRF5 as a potential immunomodulatory target in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cytokines , Humans , Cytokines/metabolism , Toll-Like Receptor 7/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Interferon Regulatory Factors/metabolism , Dendritic Cells
2.
Clin Exp Immunol ; 207(2): 227-236, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35020841

ABSTRACT

Relatively little is known about the ex vivo frequency and phenotype of the Plasmodium falciparum-specific CD4+ T-cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1∗11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in 10 patients with acute malaria. EXP1-specific CD4+ T cells were detectable in 9 out of 10 (90%) malaria patients expressing the HLA-DRB1∗11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57), and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.


Subject(s)
CD4-Positive T-Lymphocytes , Malaria, Falciparum , CD4-Positive T-Lymphocytes/metabolism , HLA-DR Serological Subtypes , Humans , Plasmodium falciparum , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism
3.
Viruses ; 14(6)2022 06 10.
Article in English | MEDLINE | ID: mdl-35746736

ABSTRACT

Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Humans , Phenotype , T-Lymphocytes, Helper-Inducer
4.
Clin Transl Immunology ; 11(8): e1410, 2022.
Article in English | MEDLINE | ID: mdl-35957961

ABSTRACT

Objectives: Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods: Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results: We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion: Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.

5.
Front Immunol ; 11: 1870, 2020.
Article in English | MEDLINE | ID: mdl-32983106

ABSTRACT

Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. In malaria, T cells express a variety of co-inhibitory receptors which might be a consequence of their activation but also might limit their overwhelming function. Thus, T cells are implicated in protection as well as in pathology. The outcome of malaria is thought to be a consequence of the balance between co-activation and co-inhibition of T cells. Following the hypothesis that T cells in COVID-19 might have a similar, dual function, we comprehensively characterized the differentiation (CCR7, CD45RO) and activation status (HLA-DR, CD38, CD69, CD226), the co-expression of co-inhibitory molecules (PD1, TIM-3, LAG-3, BTLA, TIGIT), as well as the expression pattern of the transcription factors T-bet and eomes of CD8+ and CD4+ T cells of PBMC of n = 20 SARS-CoV-2 patients compared to n = 10 P. falciparum infected patients and n = 13 healthy controls. Overall, acute COVID-19 and malaria infection resulted in a comparably elevated activation and altered differentiation status of the CD8+ and CD4+ T cell populations. T effector cells of COVID-19 and malaria patients showed higher frequencies of the inhibitory receptors T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte-activation gene-3 (LAG-3) which was linked to increased activation levels and an upregulation of the transcription factors T-bet and eomes. COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.


Subject(s)
Antigens, CD/metabolism , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Lymphocyte Activation/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/immunology , Receptors, Antigen, T-Cell/metabolism , Acute Disease , Adult , Aged , COVID-19 , Cells, Cultured , Cohort Studies , Coronavirus Infections/virology , Female , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2 , Severity of Illness Index , Lymphocyte Activation Gene 3 Protein
6.
Front Immunol ; 11: 567472, 2020.
Article in English | MEDLINE | ID: mdl-33072107

ABSTRACT

The ectoenzymes CD39 and CD73 play a major role in controlling tissue inflammation by regulating the balance between adenosine triphosphate (ATP) and adenosine. Still, little is known about the role of these two enzymes and ATP and its metabolites in the pathophysiology of inflammatory bowel disease (IBD). We isolated mononuclear cells from peripheral blood and lamina propria of the large intestine of patients diagnosed with IBD and of healthy volunteers. We then comprehensively analyzed the CD39 and CD73 expression patterns together with markers of activation (HLA-DR, CD38), differentiation (CCR7, CD45RA) and tissue-residency (CD69, CD103, CD49a) on CD4+, CD8+, γδ+ T cells and mucosa-associated invariant T cells using flow cytometry. CD39 expression levels of γδ+ and CD8+ T cells in lamina propria lymphocytes (LPL) were much higher compared to peripheral blood mononuclear cells. Moreover, the frequency of CD39+ CD4+ and CD8+, but not γδ+ LPL positively correlated with T-cell activation. The frequency of CD39+ cells among tissue-resident memory LPL (Trm) was higher compared to non-Trm for all subsets, confirming that CD39 is a marker for the tissue-resident memory phenotype. γδ+ Trm also showed a distinct cytokine profile upon stimulation - the frequency of IFN-γ+ and IL-17A+ cells was significantly lower in γδ+ Trm compared to non-Trm. Interestingly, we observed a decreased frequency of CD39+ γδ+ T cells in IBD patients compared to healthy controls (p = 0.0049). Prospective studies need to elucidate the exact role of this novel CD39+ γδ+ T-cell population with tissue-resident memory phenotype and its possible contribution to the pathogenesis of IBD and other inflammatory disorders.


Subject(s)
Apyrase/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Lymphocyte Count , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Gene Expression , Humans , Immunologic Memory , Immunophenotyping , Inflammatory Bowel Diseases/diagnosis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lymphocyte Activation , Male , Middle Aged
7.
Sci Rep ; 9(1): 10624, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337800

ABSTRACT

The combined regulation of a network of inhibitory and activating T cell receptors may be a critical step in the development of chronic HCV infection. Ex vivo HCV MHC class I + II tetramer staining and bead-enrichment was performed with baseline and longitudinal PBMC samples of a cohort of patients with acute, chronic and spontaneously resolved HCV infection to assess the expression pattern of the co-inhibitory molecule TIGIT together with PD-1, BTLA, Tim-3, as well as OX40 and CD226 (DNAM-1) of HCV-specific CD4+ T cells, and in a subset of patients of HCV-specific CD8+ T cells. As the main result, we found a higher expression level of TIGIT+ PD-1+ on HCV-specific CD4+ T cells during acute and chronic HCV infection compared to patients with spontaneously resolved HCV infection (p < 0,0001). Conversely, expression of the complementary co-stimulatory receptor of TIGIT, CD226 (DNAM-1) was significantly decreased on HCV-specific CD4+ T cells during chronic infection. The predominant phenotype of HCV-specific CD4+ T cells during acute and chronic infection was TIGIT+, PD-1+, BTLA+, Tim-3-. This comprehensive phenotypic study confirms TIGIT together with PD-1 as a discriminatory marker of dysfunctional HCV-specific CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hepatitis C, Chronic/immunology , Hepatitis C/immunology , Receptors, Immunologic/metabolism , Acute Disease , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , Female , Hepacivirus/immunology , Hepatitis A Virus Cellular Receptor 2/blood , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis C/metabolism , Hepatitis C, Chronic/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Male , Middle Aged , Programmed Cell Death 1 Receptor/blood , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/blood , Receptors, OX40/blood , Receptors, OX40/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL