ABSTRACT
Thin films of ceria (CeO(2)) have many applications, and their synthesis by liquid-injection MOCVD (metal-organic chemical vapor deposition) or ALD (atomic layer deposition) requires volatile precursor compounds. Here we report the synthesis of a series of homoleptic and heteroleptic Ce(IV) complexes with donor-functionalized alkoxide ligands mmp (1-methoxy-2-methylpropan-2-olate), dmap (1-(dimethylamino)propan-2-olate), and dmop (2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)propan-2-olate) and their potential as precursors for MOCVD and ALD of CeO(2). New complexes were synthesized by alcohol exchange reactions with [Ce(OBu(t))(4)]. [Ce(mmp)(4)] and [Ce(dmap)(4)] were both found to be excellent precursors for liquid-injection MOCVD of CeO(2), depositing high purity thin films with very low carbon contamination, and both have a large temperature window for diffusion controlled growth (350-600 °C for [Ce(mmp)(4)]; 300-600 °C for [Ce(dmap)(4)]). [Ce(mmp)(4)] is also an excellent precursor for liquid-injection ALD of CeO(2) using H(2)O as oxygen source and demonstrates self-limiting growth from 150 to 350 °C. [Ce(dmap)(4)] has lower thermal stability than [Ce(mmp)(4)] and does not show self-limiting growth in ALD. Heteroleptic complexes show a tendency to undergo ligand redistribution reactions to form mixtures in solution and are unsuitable as precursors for liquid-injection CVD.
ABSTRACT
We propose and evaluate the use of metallocene compounds as reducing agents for the chemical vapour deposition (and specifically atomic layer deposition, ALD) of the transition metal Cu from metalorganic precursors. Ten different transition metal cyclopentadienyl compounds are screened for their utility in the reduction of Cu from five different Cu precursors by evaluating model reaction energies with density functional theory (DFT) and solution phase chemistry.