Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chem Eng Sci ; 231: 116330, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33262543

ABSTRACT

Mathematical models are useful in epidemiology to understand COVID-19 contagion dynamics. We aim to demonstrate the effectiveness of parameter regression methods to calibrate an established epidemiological model describing infection rates subject to active, varying non-pharmaceutical interventions (NPIs). We assess the potential of established chemical engineering modelling principles and practice applied to epidemiological systems. We exploit the sophisticated parameter regression functionality of a commercial chemical engineering simulator with piecewise continuous integration, event and discontinuity management. We develop a strategy for calibrating and validating a model. Our results using historic data from 4 countries provide insights into on-going disease suppression measures, while visualisation of reported data provides up-to-date condition monitoring of the pandemic status. The effective reproduction number response to NPIs is non-linear with variable response rate, magnitude and direction. Our purpose is developing a methodology without presenting a fully optimised model, or attempting to predict future course of the COVID-19 pandemic.

2.
Proc Natl Acad Sci U S A ; 109(33): 13156-62, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22843674

ABSTRACT

CO(2) capture and storage (CCS) has the potential to develop into an important tool to address climate change. Given society's present reliance on fossil fuels, widespread adoption of CCS appears indispensable for meeting stringent climate targets. We argue that for conventional CCS to become a successful climate mitigation technology--which by necessity has to operate on a large scale--it may need to be complemented with air capture, removing CO(2) directly from the atmosphere. Air capture of CO(2) could act as insurance against CO(2) leaking from storage and furthermore may provide an option for dealing with emissions from mobile dispersed sources such as automobiles and airplanes.


Subject(s)
Air/analysis , Carbon Dioxide/analysis , Environmental Restoration and Remediation/methods , Costs and Cost Analysis , Environmental Restoration and Remediation/economics
3.
Phys Chem Chem Phys ; 15(2): 504-14, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23172123

ABSTRACT

An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2).

4.
Environ Sci Technol ; 45(15): 6670-5, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21688825

ABSTRACT

An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.


Subject(s)
Air/analysis , Carbon Dioxide/chemistry , Humidity , Absorption , Adsorption , Microscopy, Electron, Scanning , Models, Chemical , Temperature
5.
Phys Chem Chem Phys ; 11(40): 9044-9, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19812824

ABSTRACT

This paper reports the influence of reaction temperature on the occurrence and characteristics of pH oscillations that are observed during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, air, NaOAc) in methanol. Isothermal experiments were performed over the temperature range 10-50 degrees C. The experiments demonstrate that oscillations occur in the range 10-40 degrees C and that a decrease in reaction temperature results in an increase in the period and amplitude of the pH oscillations. Furthermore, it is observed that during oscillations at any specific temperature, the time taken for pH to increase from a minimum to a maximum value varies with respect to reaction time. However, the time required for the pH to fall from maximum to new minimum is approximately constant with respect to the reaction time and is a function of the reaction temperature.

6.
Phys Chem Chem Phys ; 10(5): 749-53, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-19791459

ABSTRACT

This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

7.
Emerg Infect Dis ; 12(5): 760-2, 2006 May.
Article in English | MEDLINE | ID: mdl-16704832

ABSTRACT

We conducted a tuberculosis contact investigation for a female military recruit with an unreported history of multidrug-resistant tuberculosis (MDRTB) and subsequent recurrence. Pertinent issues included identification of likely contacts from separate training phases, uncertainty on latent MDRTB infection treatment regimens and side effects, and subsequent dispersal of the contacts after exposure.


Subject(s)
Antitubercular Agents/therapeutic use , Military Personnel , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Pulmonary/diagnosis , Adult , Drug Resistance, Multiple, Bacterial , Female , Humans , Isoniazid/therapeutic use , Pyrazinamide/therapeutic use , Radiography, Thoracic , Rifampin/therapeutic use , Tuberculin Test , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL