Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718217

ABSTRACT

BACKGROUND: The substantial risk for respiratory and invasive infections with Streptococcus pneumoniae (Spn) among people with HIV-1 (PWH) begins with asymptomatic colonization. The frequency of Spn colonization among U.S. adults with and without HIV-1 infection is not well-characterized in the conjugate vaccine era. METHODS: We determined Spn colonization frequency by culture and specific lytA gene QPCR and microbiota profile by 16S rRNA gene sequencing in nasopharyngeal (NP) and oropharyngeal (OP) DNA from 138 PWH and 93 control adults and associated clinical characteristics. RESULTS: The frequencies of Spn colonization among PWH and controls did not differ (11.6% vs 8.6%, respectively; p=0.46) using combined results of culture and PCR, independent of vaccination or behavioral risks. PWH showed altered microbiota composition (i.e., beta-diversity. NP: p=0.0028, OP: p=0.0098), decreased alpha-diversity (NP: p=0.024, OP: p=0.0045), and differences in the relative abundance of multiple bacterial taxa. Spn colonization was associated with altered beta-diversity in the NP (p=0.011), but not OP (p=0.21). CONCLUSIONS: Despite widespread conjugate vaccine and antiretroviral use, frequencies of Spn colonization among PWH and controls are currently consistent with those reported in the pre-conjugate era. The persistently increased risk of pneumococcal disease despite ART may relate to behavioral and immunologic variables other than colonization.

2.
BMC Neurosci ; 25(1): 31, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965498

ABSTRACT

BACKGROUND: Most vocal learning species exhibit an early critical period during which their vocal control neural circuitry facilitates the acquisition of new vocalizations. Some taxa, most notably humans and parrots, retain some degree of neurobehavioral plasticity throughout adulthood, but both the extent of this plasticity and the neurogenetic mechanisms underlying it remain unclear. Differential expression of the transcription factor FoxP2 in both songbird and parrot vocal control nuclei has been identified previously as a key pattern facilitating vocal learning. We hypothesize that the resilience of vocal learning to cognitive decline in open-ended learners will be reflected in an absence of age-related changes in neural FoxP2 expression. We tested this hypothesis in the budgerigar (Melopsittacus undulatus), a small gregarious parrot in which adults converge on shared call types in response to shifts in group membership. We formed novel flocks of 4 previously unfamiliar males belonging to the same age class, either "young adult" (6 mo - 1 year) or "older adult" (≥ 3 year), and then collected audio-recordings over a 20-day learning period to assess vocal learning ability. Following behavioral recording, immunohistochemistry was performed on collected neural tissue to measure FoxP2 protein expression in a parrot vocal learning center, the magnocellular nucleus of the medial striatum (MMSt), and its adjacent striatum. RESULTS: Although older adults show lower vocal diversity (i.e. repertoire size) and higher absolute levels of FoxP2 in the MMSt than young adults, we find similarly persistent downregulation of FoxP2 and equivalent vocal plasticity and vocal convergence in the two age cohorts. No relationship between individual variation in vocal learning measures and FoxP2 expression was detected. CONCLUSIONS: We find neural evidence to support persistent vocal learning in the budgerigar, suggesting resilience to aging in the open-ended learning program of this species. The lack of a significant relationship between FoxP2 expression and individual variability in vocal learning performance suggests that other neurogenetic mechanisms could also regulate this complex behavior.


Subject(s)
Aging , Forkhead Transcription Factors , Learning , Vocalization, Animal , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Vocalization, Animal/physiology , Male , Aging/physiology , Aging/metabolism , Learning/physiology , Melopsittacus/physiology , Neurons/metabolism , Neurons/physiology
3.
Syst Biol ; 72(1): 228-241, 2023 05 19.
Article in English | MEDLINE | ID: mdl-35916751

ABSTRACT

Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within data sets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of the genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower-quality samples. Most instances of topological conflict and nonmonophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, the noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many data sets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology. [Historical DNA; machine learning; museomics; Psittaciformes; species tree.].


Subject(s)
Parrots , Humans , Animals , Phylogeny , Parrots/genetics
4.
PLoS Comput Biol ; 19(7): e1011231, 2023 07.
Article in English | MEDLINE | ID: mdl-37498847

ABSTRACT

Animals can actively encode different types of identity information in learned communication signals, such as group membership or individual identity. The social environments in which animals interact may favor different types of information, but whether identity information conveyed in learned signals is robust or responsive to social disruption over short evolutionary timescales is not well understood. We inferred the type of identity information that was most salient in vocal signals by combining computational tools, including supervised machine learning, with a conceptual framework of "hierarchical mapping", or patterns of relative acoustic convergence across social scales. We used populations of a vocal learning species as a natural experiment to test whether the type of identity information emphasized in learned vocalizations changed in populations that experienced the social disruption of introduction into new parts of the world. We compared the social scales with the most salient identity information among native and introduced range monk parakeet (Myiopsitta monachus) calls recorded in Uruguay and the United States, respectively. We also evaluated whether the identity information emphasized in introduced range calls changed over time. To place our findings in an evolutionary context, we compared our results with another parrot species that exhibits well-established and distinctive regional vocal dialects that are consistent with signaling group identity. We found that both native and introduced range monk parakeet calls displayed the strongest convergence at the individual scale and minimal convergence within sites. We did not identify changes in the strength of acoustic convergence within sites over time in the introduced range calls. These results indicate that the individual identity information in learned vocalizations did not change over short evolutionary timescales in populations that experienced the social disruption of introduction. Our findings point to exciting new research directions about the robustness or responsiveness of communication systems over different evolutionary timescales.


Subject(s)
Parrots , Animals , Biological Evolution , Language , Acoustics , Vocalization, Animal
5.
J Arthroplasty ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537838

ABSTRACT

BACKGROUND: Dislocation after total hip arthroplasty (THA) is a primary reason for THA revision. During THA through the direct anterior approach (DAA), the iliofemoral ligament, which provides the main resistance to external rotation (ER) of the hip, is commonly partially transected. We asked: (1) what is the contribution of the medial iliofemoral ligament to resisting ER after DAA THA? and (2) how much resistance to ER can be restored by repairing the ligament? METHODS: A fellowship-trained surgeon performed DAA THA on 9 cadaveric specimens. The specimens were computed tomography scanned before and after implantation. Prior to testing, the ER range of motion of each specimen to impingement in neutral and 10° of extension was computationally predicted. Each specimen was tested on a 6-degrees-of-freedom robotic manipulator. The pelvis was placed in neutral and 10° of extension. The femur was externally rotated until it reached the specimen's impingement target. Total ER torque was recorded with the medial iliofemoral ligament intact, after transecting the ligament, and after repair. Torque at extremes of motion was calculated for each condition. To isolate the contribution of the native ligament, the torque for the transected state was subtracted from both the native and repaired conditions. RESULTS: The medial iliofemoral ligament contributed an average of 68% (range, 34 to 87) of the total torque at the extreme of motion in neutral and 80% (58 to 97) in 10° of extension. The repaired ligament contributed 17% (1 to 54) of the total torque at the extreme of motion in neutral and 14% (5 to 38) in 10° of extension, restoring on average 18 to 25% of the native resistance against ER. CONCLUSIONS: The medial iliofemoral ligament was an important contributor to the hip torque at the extreme of motion during ER. Repairing the ligament restored a fraction of its ability to generate torque to resist ER.

6.
J Arthroplasty ; 39(5): 1323-1327, 2024 May.
Article in English | MEDLINE | ID: mdl-38000515

ABSTRACT

BACKGROUND: Cementless tibial baseplates in total knee arthroplasty include fixation features (eg, pegs, spikes, and keels) to ensure sufficient primary bone-implant stability. While the design of these features plays a fundamental role in biologic fixation, the effectiveness of anterior spikes in reducing bone-implant micromotion remains unclear. Therefore, we asked: Can an anterior spike reduce the bone-implant micromotion of cementless tibial implants? METHODS: We performed computational finite element analyses on 13 tibiae using the computed tomography scans of patients scheduled for primary total knee arthroplasty. The tibiae were virtually implanted with a cementless tibial baseplate with 2 designs of fixation of the baseplate: 2 pegs and 2 pegs with an anterior spike. We compared the bone-implant micromotion under the most demanding loads from stair ascent between both designs. RESULTS: Both fixation designs had peak micromotion at the anterior-lateral edge of the baseplate. The design with 2 pegs and an anterior spike had up to 15% lower peak micromotion and up to 14% more baseplate area with micromotions below the most conservative threshold for ingrowth, 20 µm, than the design with only 2 pegs. The greatest benefit of adding an anterior spike occurred for subjects who had the smallest area of tibial bone below the 20 µm threshold (ie, most at risk for failure to achieve bone ingrowth). CONCLUSIONS: An anteriorly placed spike for cementless tibial baseplates with 2 pegs can help decrease the bone-implant micromotion during stair ascent, especially for subjects with increased bone-implant micromotion and risk for bone ingrowth failure.

7.
J Arthroplasty ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38428693

ABSTRACT

BACKGROUND: Modular connections in total hip arthroplasty (THA) offer surgical advantages, but can contribute to implant fretting and corrosion due to micromotion at the head-stem interface. Previous studies implicated lower flexural rigidity as a key contributing factor to THA corrosion and fretting, but none associated flexural rigidity with direct histological evaluation or magnetic resonance imaging (MRI) outcomes. The purpose of this study was to determine how implant flexural rigidity is associated with MRI imaging metrics and histopathological outcomes in patients who have a failed THA. METHODS: Patients requiring revision THA surgery underwent preoperative MRIs with 3-dimensional multispectral imaging techniques to suppress metal artifacts. The MRI images were graded for adverse local tissue reactions. For each hip, trunnion flexural rigidity was measured from the retrieved femoral stem, and a periprosthetic tissue sample was retrieved and evaluated using semiquantitative histology. Generalized linear models and analyses of variance were used to assess associations between flexural rigidity and MRI and histology outcomes. RESULTS: A total of 106 THA stems were retrieved (46 women and 60 men, age: 68 years (range, 60 to 73 years). After adjustment for length of implantation, flexural rigidity was negatively correlated with histologic aseptic lymphocyte-dominant vasculitis-associated lesion severity (ß = -26.27, P = .018), Fujishiro lymphocyte grading (ß = -13.4, P = .039), perivascular lymphocyte layers (ß = -17.8, P = .022), the grade of tissue organization (ß = -22.5, P = .009), the presence of diffuse synovitis (ß = -66.5, P = .003), and the presence of lymphoid aggregates (ß = -75.9, P = .022). No association was found between MRI metrics and flexural rigidity. CONCLUSIONS: Among these implants, decreased trunnion stiffness was associated with increased histologic features of adverse host-mediated soft tissue reactions.

8.
J Arthroplasty ; 39(6): 1518-1523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38103805

ABSTRACT

BACKGROUND: Mid-level constraint polyethylene designs provide additional stability in total knee arthroplasty (TKA). The purposes of this study were to (1) compare the survivorship and reason for revision between mid-level inserts and posterior-stabilized (PS) used in primary TKA and (2) evaluate the biomechanical constraint characteristics of mid-level inserts. METHODS: We reviewed all cases of primary TKA performed at our institution from 2016 to 2019 using either PS or mid-level constrained inserts from 1 of 6 manufacturers. Data elements included patient demographics, implants, reasons for revision, and whether a manipulation under anesthesia was performed. We performed finite element analyses to quantify the varus/valgus and axial-rotation constraint of each mid-level constrained insert. A one-to-one propensity score matching was conducted between the patients with mid-level and PS inserts to match for variables, which yielded 2 cohorts of 3,479 patients. RESULTS: For 9,163 PS and 3,511 mid-level TKAs, survivorship free from all-cause revision was estimated up to 5 years and was lower for mid-level than PS inserts (92.7 versus 94.1%, respectively, P = .004). When comparing each company's mid-level insert to the same manufacturer's PS insert, we found no differences in all-cause revision rates (P ≥ .91) or revisions for mechanical problems (P ≥ .97). Using propensity score matching between mid-level and PS groups, no significant differences were found in rates of manipulation under anesthesia (P = .72), all-cause revision (P = .12), revision for aseptic loosening (P = .07), and revision for instability (P = .45). Finite element modeling demonstrated a range in varus/valgus constraint from ±1.1 to >5°, and a range in axial-rotation constraint from ±1.5 to ±11.5° among mid-level inserts. CONCLUSIONS: Despite wide biomechanical variations in varus/valgus and axial-rotation constraint, we found minimal differences in early survivorship rates between PS and mid-level constrained knees.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Polyethylene , Prosthesis Design , Prosthesis Failure , Reoperation , Humans , Arthroplasty, Replacement, Knee/instrumentation , Arthroplasty, Replacement, Knee/methods , Male , Aged , Female , Reoperation/statistics & numerical data , Biomechanical Phenomena , Middle Aged , Finite Element Analysis , Knee Joint/surgery , Knee Joint/physiopathology , Retrospective Studies , Aged, 80 and over
9.
J Arthroplasty ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38548236

ABSTRACT

BACKGROUND: Cementless total knee arthroplasty (TKA) has regained interest for its potential for long-term biologic fixation. The density of the bone is related to its ability to resist static and cyclic loading and can affect long-term implant fixation; however, little is known about the density distribution of periarticular bone in TKA patients. Thus, we sought to characterize the bone mineral density (BMD) of the proximal tibia in TKA patients. METHODS: We included 42 women and 50 men (mean age 63 years, range: 50 to 87; mean body mass index 31.6, range: 20.5 to 49.1) who underwent robotic-assisted TKA and had preoperative computed tomography scans with a BMD calibration phantom. Using the robotic surgical plan, we computed the BMD distribution at 1 mm-spaced cross-sections parallel to the tibial cut from 2 mm above the cut to 10 mm below. The BMD was analyzed with respect to patient sex, age, preoperative alignment, and type of fixation. RESULTS: The BMD decreased from proximal to distal. The greatest changes occurred within ± 2 mm of the tibial cut. Age did not affect BMD for men; however, women between 60 and 70 years had higher BMD than women ≥ 70 years for the total cut (P = .03) and the medial half of the cut (P = .03). Cemented implants were used in 1 86-year-old man and 18 women (seven < 60 years, seven 60 to 70 years, and four ≥ 70 year old). We found only BMD differences between cemented or cementless fixation for women < 60 years. CONCLUSIONS: To our knowledge, this is the first study to characterize the preoperative BMD distribution in TKA patients relative to the intraoperative tibial cut. Our results indicate that while sex and age may be useful surrogates of BMD, the clinically relevant thresholds for cementless knees remain unclear, offering an area for future studies.

10.
J Arthroplasty ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599529

ABSTRACT

BACKGROUND: Partial or total release of the posterior cruciate ligament (PCL) is often performed intraoperatively in cruciate-retaining total knee arthroplasty (CR-TKA) to alleviate excessive femoral rollback. However, the effect of the release of selected fibers of the PCL on femoral rollback in CR-TKA is not well understood. Therefore, we used a computational model to quantify the effect of selective PCL fiber releases on femoral rollback in CR-TKA. METHODS: Computational models of 9 cadaveric knees (age: 63 years, range 47 to 79) were virtually implanted with a CR-TKA. Passive flexion was simulated with the PCL retained and after serially releasing each individual fiber of the PCL, starting with the one located most anteriorly and laterally on the femoral notch and finishing with the one located most posteriorly on the medial femoral condyle. The experiment was repeated after releasing only the central PCL fiber. The femoral rollback of each condyle was defined as the anterior-posterior distance between tibiofemoral contact points at 0° and 90° of flexion. RESULTS: Release of the central PCL fiber in combination with the anterolateral (AL) fibers, reduced femoral rollback a median of 1.5 [0.8, 2.1] mm (P = .01) medially and by 2.0 [1.2, 2.5] mm (P = .04) laterally. Releasing the central fiber alone reduced the rollback by 0.7 [0.4, 1.1] mm (P < .01) medially and by 1.0 [0.5, 1.1] mm (P < .01) laterally, accounting for 47 and 50% of the reduction when released in combination with the AL fibers. CONCLUSIONS: Releasing the central fibers of the PCL had the largest impact on reducing femoral rollback, either alone or in combination with the release of the entire AL bundle. Thus, our findings provide clinical guidance regarding the regions of the PCL that surgeons should target to reduce femoral rollback in CR-TKA.

11.
Proc Biol Sci ; 290(2000): 20230365, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37312548

ABSTRACT

In some species, the ability to acquire new vocalizations persists into adulthood and may be an important mediator of social interactions. While it is generally assumed that vocal learning persists undiminished throughout the lifespan of these open-ended learners, the stability of this trait remains largely unexplored. We hypothesize that vocal learning exhibits senescence, as is typical of complex cognitive traits, and that this decline relates to age-dependent changes in social behaviour. The budgerigar (Melopsittacus undulatus), an open-ended learner that develops new contact call types that are shared with social associates upon joining new flocks, provides a robust assay for measuring the effects of ageing on vocal learning ability. We formed captive flocks of 4 previously unfamiliar adult males of the same age class, either 'young adults' (6 mo-1 y) or 'older adults' (≥ 3 y), and concurrently tracked changes in contact call structure and social interactions over time. Older adults exhibited decreased vocal diversity, which may be related to sparser and weaker affiliative bonds observed in older adults. Older adults, however, displayed equivalent levels of vocal plasticity and vocal convergence compared to young adults, suggesting that many components of vocal learning are largely maintained into later adulthood in an open-ended learner.


Subject(s)
Melopsittacus , Animals , Male , Aging , Intelligence , Longevity , Social Interaction
12.
Chem Rev ; 121(15): 9196-9242, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34309362

ABSTRACT

The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.

13.
Int J Colorectal Dis ; 38(1): 83, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971883

ABSTRACT

BACKGROUND: The aim of this study is to explore the impact of the approach on conversion in patients undergoing minimally invasive restorative total mesorectal excision within a single unit. METHODS: A retrospective cohort study was conducted. Patients with rectal cancer undergoing minimally invasive restorative total mesorectal excision between January 2006 and June 2020 were included. Subjects were classified according to the presence or absence of conversion. Baseline variables and short-term outcomes were compared. Regression analyses were conducted to assess the relationship between the approach and conversion. RESULTS: During the study period, 318 patients underwent a restorative proctectomy. Of these, 240 met the inclusion criteria. Robotic and laparoscopic approaches were undertaken in 147 (61.3%) and 93 (38.8%) cases, respectively. A transanal approach was utilised in 62 (25.8%) cases (58.1% in combination with a robotic transabdominal approach). Conversion to open surgery occurred in 30 cases (12.5%). Conversion was associated with an increased overall complication rate (P = 0.003), surgical complications (P = 0.009), superficial surgical site infections (P = 0.02) and an increased length of hospital stay (P = 0.006). Robotic and transanal approaches were both associated with decreased conversion rates. The multiple logistic regression analysis, however, showed that only a transanal approach was independently associated with a lower risk of conversion (OR 0.147, 0.023-0.532; P = 0.01), whilst obesity was an independent risk factor for conversion (OR 4.388, 1.852-10.56; P < 0.00). CONCLUSIONS: A transanal component is associated with a reduced conversion rate in minimally invasive restorative total mesorectal excision, regardless of the transabdominal approach utilised. Larger studies will be required to confirm these findings and define which subgroup of patients could benefit from transanal component when a robotic approach is undertaken.


Subject(s)
Laparoscopy , Rectal Neoplasms , Humans , Conversion to Open Surgery/adverse effects , Retrospective Studies , Treatment Outcome , Laparoscopy/adverse effects , Rectal Neoplasms/surgery , Rectal Neoplasms/complications , Postoperative Complications/etiology , Rectum/surgery
14.
J Arthroplasty ; 38(7S): S274-S279, 2023 07.
Article in English | MEDLINE | ID: mdl-37088224

ABSTRACT

BACKGROUND: Modular dual mobility (MDM) acetabular component use is rising in total hip arthroplasty. However, concern of mechanically assisted crevice corrosion (MACC) at the shell-liner interface remains. We investigated shell-liner corrosion using retrieval analyses and corrosion chamber testing. METHODS: We analyzed fretting and corrosion on 10 matched pairs of 2 commercial MDM constructs (MDM1 and MDM2). Also, pristine pairs of Ti6Al4V shells and CoCrMo liners from 3 commercial dual mobility systems (MDM1, MDM2, and MDM3) were tested in vitro to model MACC performance. Three pairs of each were placed into an electrochemical chamber with stepwise increasing cyclic compression loads while measuring currents generated at the shell-liner taper. Onset fretting loads and fretting currents were calculated. RESULTS: Corrosion damage scores on retrieved components were low but higher in the MDM2 to MDM1 liners (P = .006), specifically outside the taper region (P = .00003). Fretting currents were higher in the MDM2 than in MDM1 or MDM3 (P = .011). Onset loads were also higher in the MDM2 (P = .001). CONCLUSION: Among retrieved liners, MDM2 tapers seem prone to non-mechanical corrosion modes. Higher onset loads and fretting currents in MDM2 tapers indicate greater MACC resistance but higher severity once corrosion begins. Differences among the devices were likely due to taper design and surface finish. Currents in all 3 were <5 µA, much lower than those observed with head-neck tapers. Our findings suggest that, among the types of corrosion observed in these MDM designs, mechanically driven corrosion may not be the most significant.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Corrosion , Acetabulum , Prosthesis Design , Prosthesis Failure
15.
J Arthroplasty ; 38(6): 1172-1176, 2023 06.
Article in English | MEDLINE | ID: mdl-36878437

ABSTRACT

BACKGROUND: Dual mobility (DM) liners were introduced to reduce instability in total hip arthroplasty. They were found to allow for motion predominantly at the femoral head and the inner bearing of the acetabular liner; however, little is known if this motion is sufficient to alter polyethylene material characteristics. We assessed cross-link (XL) density and oxidation index (OI) measurements of the inner and outer bearing articulations. METHODS: Thirty-seven DM liners were collected with a duration of implantation greater than 2 years. Clinical and demographic data were collected from a chart review. A cylinder was cored from the apex of each liner and cut into 4.5 mm long inner and outer diameter segments for XL density swell ratio testing. The OI was measured from sagittal 100 µm microtome slices using Fourier transform infrared spectroscopy. Student's t-tests were used to determine differences in OI and XL density between the bearings. Spearman's correlation assessed relationships between patient demographics, OI, and XL density. Duration of implantation for the cohort was a mean of 35 (range, 24-96) months. RESULTS: The inner and outer bearing had similar median XL densities (0.17 mol/dm3 versus 0.17 mol/dm3, P = .6). The inner bearing had an increased OI when compared to the outer bearing (0.16 versus 0.13, P = .008). The OI was inversely correlated with XL density (r = -0.50, P = .002). CONCLUSION: Small differences were found in oxidation between the inner and outer bearing of the DM construct. Failures at an average of 3 years indicate low levels of oxidation, unlikely to impact the mechanical properties of the material.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Polyethylene , Humans , Arthroplasty, Replacement, Hip/methods , Polyethylene/chemistry , Prosthesis Design , Prosthesis Failure
16.
J Arthroplasty ; 38(6S): S363-S367, 2023 06.
Article in English | MEDLINE | ID: mdl-36813214

ABSTRACT

BACKGROUND: Fractures of the polyethylene post are a rare but known complication after posterior-stabilized (PS) total knee arthroplasty (TKA). We evaluated the polyethylene and patient characteristics for 33 primary PS polyethylene components that were revised with fractured posts. METHODS: We identified 33 PS inserts revised between 2015 and 2022. Patient characteristics collected included age at index TKA, sex, body mass index, length of implantation (LOI), and patient-reported details on events surrounding the post fracture. Implant characteristics recorded were manufacturer, cross-linking properties (highly cross-linked polyethylene [XLPE] versus ultra-high molecular weight polyethylene [UHMWPE]), wear characteristics based on subjective scoring of the articular surfaces and scanning electron microscopy (SEM) of fracture surfaces. Mean age at index surgery was 55 years (range, 35 to 69), mean body mass index was 29.5 (range, 18.5 to 37.2), and mean LOI was 10.0 (range, 4 to 26). RESULTS: Total surface damage scores were significantly higher in the UHMWPE group versus the XLPE group (57.3 versus 44.2, P = .003). SEM demonstrated fracture initiation at the posterior edge of the post in 10 of 13 cases. UHMWPE fracture surfaces posts had more tufted, irregularly clamshell features, while XLPE posts had more precise clamshell marking and a diamond pattern in the region of acute, final fracture. CONCLUSION: Characteristics of PS post fracture differed between XLPE and UHMWPE implants, with fractures occurring in the XLPE with less generalized surface damage, after a shorter LOI, and with SEM evaluation indicative of a more brittle fracture pattern.


Subject(s)
Arthroplasty, Replacement, Knee , Fractures, Bone , Knee Prosthesis , Polyethylene , Adult , Aged , Humans , Middle Aged , Arthroplasty, Replacement, Knee/adverse effects , Fractures, Bone/surgery , Knee Joint/surgery , Prosthesis Design , Prosthesis Failure
17.
J Arthroplasty ; 38(4): 757-762, 2023 04.
Article in English | MEDLINE | ID: mdl-36280162

ABSTRACT

BACKGROUND: The tibial component in total knee arthroplasty (TKA) is often chosen to maximize coverage of the tibial cut, which can result in excessive internal rotation of the component. Optimal rotational alignment may require a smaller baseplate with suboptimal coverage that could threaten fixation. We asked: "does undersizing the tibial component of a cementless TKA to gain external rotation increase the risk of bone failure?" METHODS: We developed computational finite element (FE) analysis models from the computed tomography (CT) scans of 12 patients scheduled for primary TKA. The models were implanted with a cementless tibial baseplate that maximized coverage and one or two sizes smaller and externally rotated by 5°. We calculated the risk of bone collapse under loads representative of stair ascent. RESULTS: Undersizing the implant increased the area at risk of collapse for eight patients. However, the area at risk of collapse for the undersized implant (range, 5.2%-16.4%) was no different (P = .24) to the optimally sized implant (range, 4.5%-17.9%). The bone at risk of collapse was concentrated along the posterior edge of the implant. The area at risk of collapse was not proportional to implant size, and for four subjects undersizing the implant actually decreased the area at risk of collapse. CONCLUSION: While implants should maximize coverage of the tibial cut and seek support on dense bone, undersizing the tibial component to gain external rotation had minimal impact on the load transfer to the underlying bone. This FE analysis model of a cementless tibial baseplate may require further validation and additional studies to investigate the long-term biomechanical effects of undersizing the tibial baseplate. In conclusion, while surgeons should strive to use the appropriate tibial baseplate for each patient, our model identified only minor biomechanical consequences of undersizing the implant for the immediate postoperative bone-implant interaction and implant subsidence.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Humans , Arthroplasty, Replacement, Knee/adverse effects , Knee Joint/surgery , Finite Element Analysis , Tibia/surgery
18.
J Arthroplasty ; 38(6S): S190-S195, 2023 06.
Article in English | MEDLINE | ID: mdl-36813213

ABSTRACT

BACKGROUND: Knee instability is a leading cause of dissatisfaction following total knee arthroplasty (TKA). Instability can involve abnormal laxity in multiple directions including varus-valgus (VV) angulation, anterior-posterior (AP) translation, and internal-external rotation (IER). No existing arthrometer objectively quantifies knee laxity in all three of these directions. The study objectives were to verify the safety and assess reliability of a novel multiplanar arthrometer. METHODS: The arthrometer utilized a five degree-of-freedom instrumented linkage. Two examiners each conducted two tests on the leg that had received a TKA of 20 patients (mean age 65 years (range, 53-75); 9 men, 11 women), with nine and eleven distinct patients tested at 3-month and 1-year postoperative time points, respectively. AP forces from -10 to 30 Newtons, VV moments of ±3 Newton-meters, and IER moments of ±2.5 Newton-meters were applied to each subject's replaced knee. Severity and location of knee pain during testing were assessed using a visual analog scale. Intraexaminer and interexaminer reliabilities were characterized using intraclass correlation coefficients. RESULTS: All subjects successfully completed testing. Pain during testing averaged 0.7 (out of possible 10; range, 0-2.5). Intraexaminer reliability was >0.77 for all loading directions and examiners. Interexaminer reliability and 95% confidence intervals were 0.85 (0.66-0.94), 0.67 (0.35-0.85), and 0.54 (0.16-0.79) in the VV, IER, and AP directions, respectively. CONCLUSION: The novel arthrometer was safe for evaluating AP, VV, and IER laxities in subjects who had received TKA. This device could be used to examine relationships between laxity and patient perceptions of knee instability.


Subject(s)
Arthroplasty, Replacement, Knee , Joint Instability , Male , Humans , Female , Aged , Arthroplasty, Replacement, Knee/adverse effects , Reproducibility of Results , Biomechanical Phenomena , Knee Joint/surgery , Knee/surgery , Joint Instability/diagnosis , Joint Instability/etiology , Joint Instability/surgery , Range of Motion, Articular
19.
Proc Biol Sci ; 289(1971): 20212397, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35317667

ABSTRACT

Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitivebuffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans.


Subject(s)
Parrots , Animals , Bayes Theorem , Biological Evolution , Humans , Life Expectancy , Organ Size
20.
Phys Chem Chem Phys ; 24(11): 7144-7163, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35274637

ABSTRACT

Accurate interatomic potentials were calculated for the interaction of a singly-charged silicon cation, Si+, with a single rare gas atom, RG (RG = Kr-Rn), as well as a singly-charged germanium cation, Ge+, with a single rare gas atom, RG (RG = He-Rn). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy is counterpoise corrected and extrapolated to the basis set limit. The lowest electronic term (2P) of each cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. Variations in several spectroscopic parameters with the increasing atomic number of RG were examined. The presence of incipient chemical interaction was also examined via Birge-Sponer-like plots and various population analyses across the series. In the cases of heavier RG, these were consistent with a small amount of electron transfer from the heavier RG atom to the cation, rationalizing the spin-orbit splittings. This was also supported by the observed larger-than-expected spin-orbit splittings for the Si+-RG complexes. Finally, each set of RCCSD(T) potentials including spin-orbit coupling was employed to calculate transport coefficients for the cation moving through a bath of the RG. The calculated ion mobilities showed significant differences for the two atomic spin-orbit states, arising from subtle changes in the interaction potentials.

SELECTION OF CITATIONS
SEARCH DETAIL