Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 15(1): 6050, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025886

ABSTRACT

The redox state of arc mantle has been considered to be more oxidized and diverse than that of the mid-ocean ridge, but the cause of the variation is debated. We examine the redox state of the Cenozoic global arc mantle by compiling measured/calculated fO2 of olivine-hosted melt inclusions from arc magma and modeled fO2 based on V/Sc and Cu/Zr ratios of arc basaltic rocks. The results indicate that the redox state of Cenozoic arc mantle is latitude dependent, with less oxidized arc mantle in the low latitudes, contrasting with a near constant across-latitude trend in the mid-ocean ridges. We propose that such a latitude-dependent pattern in the arc mantle may be controlled by the variation in the redox state of subducted sediment, possibly related to a latitudinal variation in the primary production of phytoplankton, which results in more organic carbon and sulfide deposited on the low-latitude ocean floor. Our findings provide evidence for the impact of the surface environment on Earth's upper mantle.

2.
Fundam Res ; 2(1): 74-83, 2022 Jan.
Article in English | MEDLINE | ID: mdl-38933911

ABSTRACT

As relics of ancient ocean lithosphere, ophiolites are the most important petrological evidence for marking the sutures and also play a key role in reconstructing plate configuration. They also provide valuable windows for studying crustal accretion and mantle processes occurring at modern ocean ridges. Abundant ophiolites are distributed along the Yarlung-Tsangpo suture and represent the relics of ocean lithosphere of the Neo-Tethys. They are characterized by an incomplete litho-stratigraphy, of which the mantle section is much thicker than the crustal section. Ocean crustal rocks outcropped in the Yarlung-Tsangpo ophiolites are much thinner than normal ocean crusts (~ 7 km) or even absent. Tectonic settings from which the Yarlung-Tsangpo ophiolites originated remain highly controversial, although an origin of the supra-subduction zone is prevailing. Moreover, their incomplete litho-stratigraphy has been commonly attributed to tectonic dismemberment during the late-stage emplacement after their formation. Nevertheless, such an incompleteness resembles the ocean lithosphere generated at modern ultraslow spreading ridges, such as the Southwest Indian Ridge (SWIR). In this paper, we present several lines of evidence that support the formation of the Yarlung-Tsangpo ophiolites at ultraslow spreading ridges, during which detachment faults were developed. This suggests that the Yarlung-Tsangpo ophiolites might represent the ocean core complexes (OCC) in the Neo-Tethys Ocean. The OCC with high topography in the seafloor were clogged in the trench and preserved as ophiolites through Indo-Eurasia collision. The clogging resulted in the demise of an old subduction and a new subduction was re-initiated beneath the clogged OCC.

SELECTION OF CITATIONS
SEARCH DETAIL