Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Blood ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657201

ABSTRACT

Teclistamab, an off-the-shelf B-cell maturation antigen (BCMA) × CD3 bispecific antibody that mediates T-cell activation and subsequent lysis of BCMA-expressing myeloma cells, is approved for the treatment of patients with relapsed/refractory multiple myeloma (RRMM). As a T-cell redirection therapy, clinical outcomes with teclistamab may be influenced by patient immune fitness and tumor antigen expression. We correlated tumor characteristics and baseline immune profiles with clinical response and disease burden in patients with RRMM from the pivotal phase 1/2 MajesTEC-1 study, focusing on patients treated with 1.5 mg/kg of teclistamab (N = 165). Peripheral blood samples were collected at screening and bone marrow samples were collected at screening and cycle 3. Better clinical outcomes to teclistamab correlated with higher baseline total T-cell counts in the periphery. In addition, responders (partial response or better) had a lower proportion of immunosuppressive regulatory T cells, T cells expressing co-inhibitory receptors (CD38, PD-1, PD-1/TIM-3), and soluble BCMA, and a T-cell profile suggestive of a more cytolytic potential, compared with nonresponders. Neither frequency of baseline bone marrow BCMA expression nor BCMA receptor density were associated with clinical response to teclistamab. Improved progression-free survival was observed in patients with a lower frequency of T cells expressing exhaustion markers and immunosuppressive regulatory T cells. Overall, response to teclistamab was associated with baseline immune fitness; nonresponders had immune profiles suggestive of immune suppression and T-cell dysfunction. These findings illustrate the importance of the contribution of the immune landscape to T-cell redirection therapy response. This trial was registered at www.ClinicalTrials.gov, NCT03145181/NCT04557098.

2.
J Pharmacokinet Pharmacodyn ; 43(5): 513-27, 2016 10.
Article in English | MEDLINE | ID: mdl-27612462

ABSTRACT

We aimed to develop a cell-level pharmacodynamics-mediated drug disposition (PDMDD) model to analyze in vivo systems where the PD response to a drug has an appreciable effect on the pharmacokinetics (PK). An existing cellular level model of PD stimulation was combined with the standard target-mediated drug disposition (TMDD) model and the resulting model structure was parametrically identifiable from typical in vivo PK and PD data. The PD model of the cell population was controlled by the production rate k in and elimination rate k out which could be stimulated or inhibited by the number of bound receptors on a single cell. Simulations were performed to assess the impact of single and repeated dosing on the total drug clearance. The clinical utility of the cell-level PDMDD model was demonstrated by fitting published data on the stimulatory effects of filgrastim on absolute neutrophil counts in healthy subjects. We postulated repeated dosing as a means of detecting and quantifying PDMDD as a single dose might not be sufficient to elicit the cellular response capable of altering the receptor pool to visibly affect drug disposition. In the absence of any PD effect, the model reduces down to the standard TMDD model. The applications of this model can be readily extended to include chemotherapy-induced cytopenias affecting clearance of endogenous hematopoietic growth factors, different monoclonal antibodies and immunogenicity effects on PK.


Subject(s)
Filgrastim/pharmacokinetics , Hematologic Agents/pharmacokinetics , Models, Biological , Neutrophils/drug effects , Receptors, Drug/metabolism , Biological Transport , Computer Simulation , Dose-Response Relationship, Drug , Filgrastim/administration & dosage , Hematologic Agents/administration & dosage , Hematologic Agents/blood , Humans , Metabolic Clearance Rate , Neutrophils/cytology , Neutrophils/metabolism , Nonlinear Dynamics , Protein Binding , Tissue Distribution
3.
Antimicrob Agents Chemother ; 59(4): 2179-88, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645847

ABSTRACT

Ribavirin, a guanosine analog, is a broad-spectrum antiviral agent. Ribavirin has been a fundamental component of the treatment of hepatitis C virus (HCV) infection for decades, but there is a very limited understanding of the clinical pharmacology of this drug. Furthermore, it is associated with a major dose-limiting toxicity, hemolytic anemia. Ribavirin undergoes intracellular phosphorylation by host enzymes to ribavirin monophosphate (RMP), ribavirin diphosphate (RDP), and ribavirin triphosphate (RTP). The intracellular forms have been associated with antiviral and toxic effects in vitro, but the kinetics of these phosphorylated moieties have not been fully elucidated in vivo. We developed a model to characterize the plasma pharmacokinetics of ribavirin and the difference between intracellular phosphorylation kinetics in red cells (nonnucleated) and in peripheral blood mononuclear cells (nucleated). A time-independent two-compartment model with first-order absorption described the plasma data well. The cellular phosphorylation kinetics was described by a one-compartment model for RMP, with the formation rate driven by plasma concentrations and the first-order degradation rate. RDP and RTP rapidly reached equilibrium with RMP. Concomitant telaprevir use, inosine triphosphatase genetics, creatinine clearance, weight, and sex were significant covariates. The terminal ribavirin half-life in plasma and phosphorylated anabolites in cells was approximately 224 h. We found no evidence of time-dependent kinetics. These data provide a foundation for uncovering concentration-effect associations for ribavirin and determining the optimal dose and duration of this drug for use in combination with newer direct-acting HCV agents. (This study has been registered at ClinicalTrials.gov under registration no. NCT01097395.).


Subject(s)
Antiviral Agents/pharmacokinetics , Hepatitis C, Chronic/blood , Ribavirin/pharmacokinetics , Adult , Antiviral Agents/blood , Antiviral Agents/therapeutic use , Body Weight , Erythrocytes/metabolism , Female , Half-Life , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Humans , Liver Function Tests , Male , Middle Aged , Models, Statistical , Oligopeptides/therapeutic use , Phosphorylation , Population , Ribavirin/blood , Ribavirin/therapeutic use , Sex Characteristics
4.
Article in English | MEDLINE | ID: mdl-38831634

ABSTRACT

Cytokine release syndrome (CRS) was associated with teclistamab treatment in the phase I/II MajesTEC-1 study. Cytokines, especially interleukin (IL)-6, are known suppressors of cytochrome P450 (CYP) enzymes' activity. A physiologically based pharmacokinetic model evaluated the impact of IL-6 serum levels on exposure of substrates of various CYP enzymes (1A2, 2C9, 2C19, 3A4, 3A5). Two IL-6 kinetics profiles were assessed, the mean IL-6 profile with a maximum concentration (Cmax) of IL-6 (21 pg/mL) and the IL-6 profile of the patient presenting the highest IL-6 Cmax (288 pg/mL) among patients receiving the recommended phase II dose of teclistamab in MajesTEC-1. For the mean IL-6 kinetics profile, teclistamab was predicted to result in a limited change in exposure of CYP substrates (area under the curve [AUC] mean ratio 0.87-1.20). For the maximum IL-6 kinetics profile, the impact on omeprazole, simvastatin, midazolam, and cyclosporine exposure was weak to moderate (mean AUC ratios 1.90-2.23), and minimal for caffeine and s-warfarin (mean AUC ratios 0.82-1.25). Maximum change in exposure for these substrates occurred 3-4 days after step-up dosing in cycle 1. These results suggest that after cycle 1, drug interaction from IL-6 effect has no meaningful impact on CYP activities, with minimal or moderate impact on CYP substrates. The highest risk of drug interaction is expected to occur during step-up dosing up to 7 days after the first treatment dose (1.5 mg/kg subcutaneously) and during and after CRS.

5.
Antivir Ther ; 28(1): 13596535231151626, 2023 02.
Article in English | MEDLINE | ID: mdl-36691849

ABSTRACT

BACKGROUND: JNJ-4964 is a TLR7 agonist, which, via a type I interferon (IFN)-dependent mechanism, may enhance host immunity suppressed by persistent exposure to hepatitis B antigens in chronic hepatitis B. METHODS: PK and PD data were pooled from 2 studies involving 90 participants (n = 74 JNJ-4964, dose range 0.2-1.8 mg; n = 16 placebo) in a fasted state. Food effects on PK were studied in 24 participants (1.2 or 1.25 mg). A population PK model and PK/PD models were developed to characterize the effect of JNJ-4964 plasma levels on the time course of IFN-α, IFN-γ-inducible protein 10 (IP-10 or CXCL10), IFN-stimulated gene 15 (ISG15), neopterin and lymphocytes following single and weekly dosing in healthy adults. Covariate effects, circadian rhythms and negative feedback were incorporated in the models. RESULTS: A 3-compartment linear PK model with transit absorption adequately described JNJ-4964 PK. Bioavailability was 44.2% in fed state relative to fasted conditions. Indirect response models with maximum effect (Emax) stimulation on production rate constant (kin) described IFN-α, IP-10, ISG15 and neopterin, while a precursor-dependent indirect response model with inhibitory effect described the transient lymphocyte reduction. Emax, EC50 and γ (steepness) estimates varied according to PD markers, with EC50 displaying substantial between-subject variability. Female and Asian race exhibited lower EC50, suggesting higher responsiveness. CONCLUSIONS: PK/PD models well characterized the time course of immune system markers in healthy adults. Our results supported sex and race as covariates on JNJ-4964 responsiveness, as well as circadian rhythms and negative feedback as homeostatic mechanisms that are relevant in TLR7-induced type I IFN responses.


Subject(s)
Chemokine CXCL10 , Toll-Like Receptor 7 , Adult , Humans , Adjuvants, Immunologic/pharmacokinetics , Dose-Response Relationship, Drug , Interferon-alpha , Models, Biological , Neopterin , Clinical Trials as Topic
6.
Target Oncol ; 18(5): 667-684, 2023 09.
Article in English | MEDLINE | ID: mdl-37713090

ABSTRACT

BACKGROUND: Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, is approved in patients with relapsed/refractory multiple myeloma (RRMM) who have previously received an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 antibody. OBJECTIVE: We report the population pharmacokinetics of teclistamab administered intravenously and subcutaneously (SC) and exposure-response relationships from the phase I/II, first-in-human, open-label, multicenter MajesTEC-1 study. METHODS: Phase I of MajesTEC-1 consisted of dose escalation and expansion at the recommended phase II dose (RP2D; 1.5 mg/kg SC weekly, preceded by step-up doses of 0.06 and 0.3 mg/kg); phase II investigated the efficacy of teclistamab RP2D in patients with RRMM. Population pharmacokinetics and the impact of covariates on teclistamab systemic exposure were assessed using a 2-compartment model with first-order absorption for SC and parallel time-independent and time-dependent elimination pathways. Exposure-response analyses were conducted, including overall response rate (ORR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and the incidence of grade ≥ 3 anemia, neutropenia, lymphopenia, leukopenia, thrombocytopenia, and infection. RESULTS: In total, 4840 measurable serum concentration samples from 338 pharmacokinetics-evaluable patients who received teclistamab were analyzed. The typical population value of time-independent and time-dependent clearance were 0.449 L/day and 0.547 L/day, respectively. The time-dependent clearance decreased rapidly to < 10% after 8 weeks of teclistamab treatment. Patients who discontinue teclistamab after the 13th dose are expected to have a 50% reduction from Cmax in teclistamab concentration at a median (5th to 95th percentile) time of 15 days (7-33 days) after Tmax and a 97% reduction from Cmax in teclistamab concentration at a median time of 69 days (32-163 days) after Tmax. Body weight, multiple myeloma type (immunoglobulin G vs non-immunoglobulin G), and International Staging System (ISS) stage (II vs I and III vs I) were statistically significant covariates on teclistamab pharmacokinetics; however, these covariates had no clinically relevant effect on the efficacy of teclistamab at the RP2D. Across all doses, ORR approached a plateau at the concentration range associated with RP2D, and in patients who received the RP2D, a flat exposure-response curve was observed. No apparent relationship was observed between DoR, PFS, OS, and the incidence of grade ≥3 adverse events across the predicted exposure quartiles. CONCLUSION: Body weight, myeloma type, and ISS stage impacted systemic teclistamab exposure without any clinically relevant effect on efficacy. The exposure-response analyses for ORR showed a positive trend with increasing teclistamab systemic exposure, with a plateau at the RP2D, and there was no apparent exposure-response trend for safety or other efficacy endpoints. These analyses support the RP2D of teclistamab in patients with RRMM. CLINICAL TRIAL REGISTRATION: NCT03145181 (phase I, 09 May 2017); NCT04557098 (phase II, 21 September 2020).


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Neutropenia , Humans , Multiple Myeloma/drug therapy , Proteasome Inhibitors , Body Weight
7.
Clin Transl Sci ; 15(12): 3000-3011, 2022 12.
Article in English | MEDLINE | ID: mdl-36204820

ABSTRACT

The aims of this work were to develop a population pharmacokinetic (PK) model for chimeric antigen receptor (CAR) transgene after single intravenous infusion administration of ciltacabtagene autoleucel in adult patients with relapsed or refractory multiple myeloma. CAR transgene level in blood were measured by quantitative polymerase chain reaction (qPCR) from 97 subjects in a phase Ib/II CARTITUDE-1 study (NCT03548207), with a targeted cilta-cel dose of 0.75 × 106 (range 0.5-1.0 × 106 ) CAR positive viable T-cells per kg body weight. The population PK model development was primarily guided by the current mechanistic understanding of CAR-T kinetics and the principles of building a parsimonious model. Cilta-cel PK was adequately described by a two-compartment model (with a fast and a slow apparent decline rate from each compartment, respectively) and a chain of four transit compartments with a lag time empirically representing the process from infused CAR-T cell to measurable CAR transgene. No apparent relationship was observed between cilta-cel dose (i.e., the actual number of CAR positive viable T-cells infused), given the narrow dose range, and the observed transgene level. Based on covariate search and subgroup analysis of maximum systemic CAR transgene level (Cmax ) and area under curve from the first dose to day 28 (AUC0-28d ), none of the investigated subjects' demographics, baseline characteristics, and manufactured product characteristics had significant effects on cilta-cel PK. The developed model is deemed robust and adequate for enabling subsequent exposure-safety and exposure-efficacy analyses.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Adult , Humans , Multiple Myeloma/drug therapy , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
8.
Antivir Ther ; 26(3-5): 58-68, 2021 05.
Article in English | MEDLINE | ID: mdl-35485332

ABSTRACT

BACKGROUND: This Phase I, two-part, first-in-human study assessed safety/tolerability and pharmacokinetics/pharmacodynamics of single-ascending doses (SAD) and multiple doses (MD) of the oral toll-like receptor-7 agonist, JNJ-64794964 (JNJ-4964) in healthy adults. METHODS: In the SAD phase, participants received JNJ-4964 0.2 (N = 6), 0.6 (N = 6), 1.25 (N = 8) or 1.8 mg (N = 6) or placebo (N = 2/dose cohort) in a fasted state. Food effect was evaluated for the 1.25 mg cohort following ≥6 weeks washout. In the MD phase, participants received JNJ-4964 1.25 mg (N = 6) or placebo (N = 2) weekly (fasted) for 4 weeks. Participants were followed-up for 4 weeks. RESULTS: No serious adverse events (AEs) occurred. 10/34 (SAD) and 5/8 (MD) participants reported mild-to-moderate (≤Grade 2), transient, reversible AEs possibly related to JNJ-4964. Five (SAD) participants had fever/flu-like AEs, coinciding with interferon-α serum levels ≥100 pg/mL and lymphopenia (<1 × 109/L), between 24-48 h after dosing and resolving approximately 96 h after dosing. One participant (MD) had an asymptomatic Grade 1 AE of retinal exudates (cotton wool spots) during follow-up, resolving 6 weeks after observation. JNJ-4964 exhibited dose-proportional pharmacokinetics, with rapid absorption (tmax 0.5-0.75 h) and distribution, and a long terminal half-life (150-591 h). Overall, no significant differences in JNJ-4964 pharmacokinetic parameters were observed in the fed versus fasted state. JNJ-4964 dose-dependently and transiently induced cytokines with potential anti-HBV activity, including interferon-α, IP-10, IL-1 RA, and/or MCP-1, and interferon-stimulated genes (ISG15, MX1, and OAS1) in serum. CONCLUSIONS: In healthy adults, JNJ-4964 was generally well-tolerated, exhibited dose-proportional pharmacokinetics and induced cytokines/ISGs, with possible anti-HBV activity.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptor 7 , Adult , Area Under Curve , Cytokines , Double-Blind Method , Humans , Interferon-alpha
SELECTION OF CITATIONS
SEARCH DETAIL