Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
PLoS Pathog ; 19(8): e1011570, 2023 08.
Article in English | MEDLINE | ID: mdl-37643174

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) can cause severe acute infections, including pneumonia and sepsis, and cause chronic infections, commonly in patients with structural respiratory diseases. However, the molecular and pathophysiological mechanisms of P. aeruginosa respiratory infection are largely unknown. Here, we performed assays for transposase-accessible chromatin using sequencing (ATAC-seq), transcriptomics, and quantitative mass spectrometry-based proteomics and ubiquitin-proteomics in P. aeruginosa-infected lung tissues for multi-omics analysis, while ATAC-seq and transcriptomics were also examined in P. aeruginosa-infected mouse macrophages. To identify the pivotal factors that are involved in host immune defense, we integrated chromatin accessibility and gene expression to investigate molecular changes in P. aeruginosa-infected lung tissues combined with proteomics and ubiquitin-proteomics. Our multi-omics investigation discovered a significant concordance for innate immunological and inflammatory responses following P. aeruginosa infection between hosts and alveolar macrophages. Furthermore, we discovered that multi-omics changes in pioneer factors Stat1 and Stat3 play a crucial role in the immunological regulation of P. aeruginosa infection and that their downstream molecules (e.g., Fas) may be implicated in both immunosuppressive and inflammation-promoting processes. Taken together, these findings indicate that transcription factors and their downstream signaling molecules play a critical role in the mobilization and rebalancing of the host immune response against P. aeruginosa infection and may serve as potential targets for bacterial infections and inflammatory diseases, providing insights and resources for omics analyses.


Subject(s)
Pneumonia , Pseudomonas aeruginosa , Animals , Mice , Multiomics , Chromatin , Ubiquitins
2.
Small ; 20(9): e2306945, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863806

ABSTRACT

The Sabatier principle defines the essential criteria for an ideal catalyst in heterogeneous catalysis, while reaching the Sabatier optimum is still challenging in catalyst design. Herein, an elegant strategy is described to reach the Sabatier optimum of Ni electrocatalyst in CO2 reduction reaction (CO2 RR) by atomically Zn doping. The incorporation of 3% Zn single atom into Ni lattice leads to the moderate degrade of d-band center via Ni-Zn electronic coupling, which balances the bonding strengths of *COOH and *CO, resulting in a relative low energy barrier for CO2 activation while not being substantially poisoned by CO. Consequently, NiZn0.03 /C exhibits unique catalytic activity (jCO >100 mA cm-2 at -0.6 V), wide potential range for selective CO production (FECO >90% from -0.65 to -1.15 V), and outstanding long-term stability (FECO >90% during 85 h electrolysis at -0.85 V). The results provide valuable insights for the rational fabrication of superior non-noble bimetallic electrocatalysts in CO2 electroreduction.

3.
Nano Lett ; 23(23): 10946-10954, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088141

ABSTRACT

Bismuth-based catalysts have advanced CO2 electroreduction to formic acid, but their intrinsic electronic structure remains a key obstacle to achieving a high catalytic performance. Herein, a copper bridge strategy is proposed to enhance electronic modulation effects in bismuth/carbon composites. Density functional theory calculations prove the novel p-d-p hybrid orbitals on the carbon-copper-bismuth heterojunction structure (Bi-Cu/HMCS) could stabilize the HCOO* intermediate and lower the thermodynamic barrier from CO2 to formic acid. With the rapid electron-supplying effect of "copper bridge", the faradaic efficiency of formate reaches 100% (±2%) at a low overpotential of 500 mV and remains above 90% within a wide potential range. Using a solid-state electrolyte device, pure 0.6 M HCOOH is produced at a stable current density of 100 mA cm-2 within 7.5 h, boasting an impressive energy efficiency of 53.8%. This work offers a new strategy for optimizing electronic structure of metal/carbon composite electrocatalysts.

4.
Angew Chem Int Ed Engl ; : e202407024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864254

ABSTRACT

Ni-rich cathodes have been intensively adopted in Li-ion batteries to pursuit high energy density, which still suffering irreversible degradation at high voltage. Some unstable lattice O2- species in Ni-rich cathodes would be oxidized to singlet oxygen 1O2 and released at high volt, which lead to irreversible phase transfer from the layered rhombohedral (R) phase to a spinel-like (S) phase. To overcome the issue, the amphiphilic copolymers (UMA-Fx) electrolyte were prepared by linking hydrophobic C-F side chains with hydrophilic subunits, which could self-assemble on Ni-rich cathode surface and convert to stable cathode-electrolyte interphase layer. Thereafter, the oxygen releasing of polymer coated cathode was obviously depressed and substituted by the Co oxidation (Co3+→Co4+) at high volt (>4.2V), which could suppressed irreversible phase transfer and improve cycling stability. Moreover, the amphiphilic polymer electrolyte was also stable with Li anode and had high ion conductivity. Therefore, the NCM811//UMA-F6//Li pouch cell exhibited outstanding energy density (362.97 Wh/kg) and durability (cycled 200 times at 4.7V), which could be stalely cycled even at 120℃ without short circuits or explosions.

5.
Chemistry ; 29(65): e202301918, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37641166

ABSTRACT

Even though Fe-based catalysts have been widely employed for CO2 hydrogenation into hydrocarbons, oxygenates, liquid fuels, etc., the precise regulation of their physicochemical properties is needed to enhance the catalytic performance. Herein, under the guidance of the traditional concept in heterogeneous catalysis-confinement effect, a core-shell structured catalyst Na-Fe3 O4 @C is constructed to boost the CO2 hydrogenation performance. Benefiting from the carbon-chain growth limitation, tailorable H2 /CO2 ratio on the catalytic interface, and unique electronic property that all endowed by the confinement effect, the selectivity and space-time yield of light olefins (C2 = -C4 = ) are as high as 47.4 % and 15.9 g molFe -1  h-1 , respectively, which are all notably higher than that from the shell-less counterpart. The function mechanism of the confinement effect in Fe-based catalysts are clarified in detail by multiple characterization and density functional theory (DFT). This work may offer a new prospect for the rational design of CO2 hydrogenation catalyst.

6.
Chemistry ; 29(40): e202301135, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37160742

ABSTRACT

Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol-mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure-function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov ) density in reducible Cr2 O3 by sequential carbonization and oxidation (SCO) treatments of Cr-based metal-organic frameworks. Thanks to the enriched Ov , Cr2 O3 -based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H-ZSM-5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H-ZSM-5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.

7.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513416

ABSTRACT

An efficient and low-cost oxygen catalyst for the oxygen reduction reaction (ORR) was developed by in situ growth of Mn-Mo oxide nanoparticles on nitrogen-doped carbon nanotubes (NCNTs). Doped nitrogen effectively increases the electron conductivity of the MnMoO4@NCNT complex and the binding energy between the Mn-Mo oxide nanoparticles and carbon nanotubes (CNTs), leading to fast charge transfer and more catalytically active sites. Combining Mn and Mo with NCNTs improves the catalytic activity and promotes both electron and mass transfers, greatly enhancing the catalytic ability for ORR. As a result, MnMoO4@NCNT exhibited a comparable half-wave potential to commercial Pt/C and superior durability, demonstrating great potential for application in renewable energy conversion systems.

8.
Prog Plann ; 168: 100657, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35280114

ABSTRACT

The COVID-19 pandemic highlighted the need for decision-support tools to help cities become more resilient to infectious diseases. Through urban design and planning, non-pharmaceutical interventions can be enabled, impelling behaviour change and facilitating the construction of lower risk buildings and public spaces. Computational tools, including computer simulation, statistical models, and artificial intelligence, have been used to support responses to the current pandemic as well as to the spread of previous infectious diseases. Our multidisciplinary research group systematically reviewed state-of-the-art literature to propose a toolkit that employs computational modelling for various interventions and urban design processes. We selected 109 out of 8,737 studies retrieved from databases and analysed them based on the pathogen type, transmission mode and phase, design intervention and process, as well as modelling methodology (method, goal, motivation, focus, and indication to urban design). We also explored the relationship between infectious disease and urban design, as well as computational modelling support, including specific models and parameters. The proposed toolkit will help designers, planners, and computer modellers to select relevant approaches for evaluating design decisions depending on the target disease, geographic context, design stages, and spatial and temporal scales. The findings herein can be regarded as stand-alone tools, particularly for fighting against COVID-19, or be incorporated into broader frameworks to help cities become more resilient to future disasters.

9.
Angew Chem Int Ed Engl ; 62(36): e202304699, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37409373

ABSTRACT

Developing new reactive pathway to activate inert C(sp3 )-H bonds for valuable oxygenated products remains a challenge. We prepared a series of triazine conjugated organic polymers to photoactivate C-H into aldehyde/ketone via O2 →H2 O2 →⋅OH→Cl⋅→Cl2 ⋅- . Experiment results showed Cl2 ⋅- could successively activate C(sp3 )-H more effectively than Cl⋅ to generate unstable dichlorinated intermediates, increasing the kinetic rate ratio of dichlorination to monochlorination by a factor of 2,000 and thus breaking traditional dichlorination kinetic constraints. These active intermediates were hydrolyzed into aldehydes or ketones easily, when compared with typical stable dichlorinated complexes, avoiding chlorinated by-product generation. Moreover, an integrated two-phase system in an acid solution strengthened the Cl2 ⋅- mediated process and inhibited product overoxidation, where the conversion rate of toluene reached 16.94 mmol/g/h and the selectivity of benzaldehyde was 99.5 %. This work presents a facile and efficient approach for selective conversion of inert C(sp3 )-H bonds using Cl2 ⋅- .

10.
Angew Chem Int Ed Engl ; 62(46): e202311786, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37735097

ABSTRACT

The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx -Fe5 C2 -Fe3 O4 , in which the electron-transfer pathway (ZnOx →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CHx * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat -1 h-1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

11.
Angew Chem Int Ed Engl ; 62(46): e202312029, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37747695

ABSTRACT

Flue gas desulfurization is crucial for both human health and ecological environments. However, developing efficient SO2 adsorbents that can break the trade-off between adsorption capacity and selectivity is still challenging. In this work, a new type of fluorinated anion-pillared metal-organic frameworks (APMOFs) with a pillar-cage structure is fabricated through pillar-embedding into a highly porous and robust framework. This type of APMOFs comprises smaller tetrahedral cages and larger icosahedral cages interconnected by embedded [NbOF5 ]2- and [TaOF5 ]2- anions acting as pillars. The APMOFs exhibits high porosity and density of fluorinated anions, ensuring exceptional SO2 adsorption capacity and ultrahigh selectivity for SO2 /CO2 and SO2 /N2 gas mixtures. Furthermore, these two structures demonstrate excellent stability towards water, acid/alkali, and SO2 adsorption. Cycle dynamic breakthrough experiments confirm the excellent separation performance of SO2 /CO2 gas mixtures and their cyclic stability. SO2 -loaded single-crystal X-ray diffraction, Grand canonical Monte Carlo (GCMC) simulations combined with density functional theory (DFT) calculations reveal the preferred adsorption domains for SO2 molecules. The multiple-site host-guest and guest-guest interactions facilitate selective recognition and dense packing of SO2 in this hybrid porous material. This work will be instructive for designing porous materials for flue gas desulfurization and other gas-purification processes.

12.
BMC Plant Biol ; 22(1): 348, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35843937

ABSTRACT

BACKGROUND: Heterosis is widely used in many crops and is important for global food safety, and maize is one of the most successful crops to take advantage of heterosis. Gene expression patterns control the development of the maize ear, but the mechanisms by which heterosis affects transcriptional-level control are not fully understood. RESULTS: In this study, we sampled ear inflorescence meristems (IMs) from the single-segment substitution maize (Zea mays) line lx9801hlEW2b, which contains the heterotic locus hlEW2b associated with ear width, as well as the receptor parent lx9801, the test parent Zheng58, and their corresponding hybrids Zheng58 × lx9801hlEW2b (HY) and Zheng58 × lx9801 (CK). After RNA sequencing and transcriptomic analysis, 2531 unique differentially expressed genes (DEGs) were identified between the two hybrids (HY vs. CK). Our results showed that approximately 64% and 48% of DEGs exhibited additive expression in HY and CK, whereas the other genes displayed a non-additive expression pattern. The DEGs were significantly enriched in GO functional categories of multiple metabolic processes, plant organ morphogenesis, and hormone regulation. These essential processes are potentially associated with heterosis performance during the maize ear developmental stage. In particular, 125 and 100 DEGs from hybrids with allele-specific expression (ASE) were specifically identified in HY and CK, respectively. Comparison between the two hybrids suggested that ASE genes were involved in different development-related processes that may lead to the hybrid vigor phenotype during maize ear development. In addition, several critical genes involved in auxin metabolism and IM development were differentially expressed between the hybrids and showed various expression patterns (additive, non-additive, and ASE). Changes in the expression levels of these genes may lead to differences in auxin homeostasis in the IM, affecting the transcription of core genes such as WUS that control IM development. CONCLUSIONS: Our research suggests that additive, non-additive, and allele-specific expression patterns may fine-tune the expression of crucial DEGs that modulate carbohydrate and protein metabolic processes, nitrogen assimilation, and auxin metabolism to optimal levels, and these transcriptional changes may play important roles in maize ear heterosis. The results provide new information that increases our understanding of the relationship between transcriptional variation and heterosis during maize ear development, which may be helpful for clarifying the genetic and molecular mechanisms of heterosis.


Subject(s)
Hybrid Vigor , Zea mays , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Hybrid Vigor/genetics , Hybridization, Genetic , Indoleacetic Acids/metabolism , Inflorescence , Meristem/genetics , Transcriptome , Zea mays/metabolism
13.
Phys Chem Chem Phys ; 24(47): 29214-29222, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36445069

ABSTRACT

The potential of carbon materials for electrochemical processes could be largely activated by the delicate regulation of their intrinsic defects, and this prospect could be further enhanced after hybridizing with other functional components. Herein, we, for the first time, systematically combine graphene possessing different intrinsic defects with MoS2 as a host material for sulfur in lithium-sulfur batteries using first-principles calculations. After introducing the intrinsic defects in graphene, the heterostructures provide moderate binding affinity to lithium polysulfides (LiPSs) and facilitate their chemical reactions due to the unsaturated coordination of defective carbon and the charge rearrangement inside the heterostructures. Specifically, graphene with intrinsic defects increases the active sites and improves the conductivity, while MoS2 can not only improve the adsorption for LiPSs, but also provide smooth Li diffusion pathways and catalyze the rapid conversion of LiPSs. Among all the calculated heterostructures, the single vacancy graphene/MoS2 heterostructure is considered to be the most promising sulfur host due to the strongest binding strength to LiPSs (3.10-0.72 eV) and the lowest free energy barrier for the sulfur reduction reaction (1.36 eV), which is attributed to the spin polarization near the carbon defect. This work could afford fruitful insights into the rational design of defect engineering in heterostructures.

14.
Angew Chem Int Ed Engl ; 61(28): e202204661, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35445780

ABSTRACT

Oxidizing CH4 into liquid products with O2 under mild conditions still mainly relies on metal catalysis. We prepared a series of sulfone-modified conjugated organic polymers and found that the catalyst with proper SVI content (0.10) could drive O2 →H2 O2 →⋅OH to oxidize CH4 into CH3 OH and HCOOH directly and efficiently at room temperature under light irradiation. Experimental results showed that after 4 h reaction, decomposition rate and residual amounts of H2 O2 were 81.21 % and 4.83 mmol gcat -1 respectively, and CH4 conversion rate was 22.81 %. Mechanism studies revealed that illumination could induce the homolytic dissociation of S=O bonds on catalyst to produce oxygen and sulfur radicals, where the ⋅O could adsorb and activate CH4 , and the ⋅S could supply electrons for 1 O2 to generate H2 O2 and then for decomposing the H2 O2 into ⋅OH timely to oxidize CH4 . This research provided a novel organic catalysis approach for oxygen activation and utilization.

15.
Angew Chem Int Ed Engl ; 61(3): e202114681, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34755421

ABSTRACT

As an emerging post-lithium battery technology, aluminum ion batteries (AIBs) have the advantages of large Al reserves and high safety, and have great potential to be applied to power grid energy storage. But current graphite cathode materials are limited in charge storage capacity due to the formation of stage-4 graphite-intercalated compounds (GICs) in the fully charged state. Herein, we propose a new type of cathode materials for AIBs, namely polycyclic aromatic hydrocarbons (PAHs), which resemble graphite in terms of the large conjugated π bond, but do not form GICs in the charge process. Quantum chemistry calculations show that PAHs can bind AlCl4 - through the interaction between the conjugated π bond in the PAHs and AlCl4 - , forming on-plane interactions. The theoretical specific capacity of PAHs is negatively correlated with the number of benzene rings in the PAHs. Then, under the guidance of theoretical calculations, anthracene, a three-ring PAH, was evaluated as a cathode material for AIBs. Electrochemical measurements show that anthracene has a high specific capacity of 157 mAh g-1 (at 100 mA g-1 ) and still maintains a specific capacity of 130 mAh g-1 after 800 cycles. This work provides a feasible "theory guides practice" research model for the development of energy storage materials, and also provides a new class of promising cathode materials for AIBs.

16.
BMC Plant Biol ; 21(1): 118, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637040

ABSTRACT

BACKGROUND: Maize (Zea mays) ear length, which is an important yield component, exhibits strong heterosis. Understanding the potential molecular mechanisms of ear-length heterosis is critical for efficient yield-related breeding. RESULTS: Here, a joint netted pattern, including six parent-hybrid triplets, was designed on the basis of two maize lines harboring long (T121 line) and short (T126 line) ears. Global transcriptional profiling of young ears (containing meristem) was performed. Multiple comparative analyses revealed that 874 differentially expressed genes are mainly responsible for the ear-length variation between T121 and T126 lines. Among them, four key genes, Zm00001d049958, Zm00001d027359, Zm00001d048502 and Zm00001d052138, were identified as being related to meristem development, which corroborated their roles in the superior additive genetic effects on ear length in T121 line. Non-additive expression patterns were used to identify candidate genes related to ear-length heterosis. A non-additively expressed gene (Zm00001d050649) was associated with the timing of meristematic phase transition and was determined to be the homolog of tomato SELF PRUNING, which assists SINGLE FLOWER TRUSS in driving yield-related heterosis, indicating that Zm00001d050649 is a potential contributor to drive heterotic effect on ear length. CONCLUSION: Our results suggest that inbred parents provide genetic and heterotic effects on the ear lengths of their corresponding F1 hybrids through two independent pathways. These findings provide comprehensive insights into the transcriptional regulation of ear length and improve the understanding of ear-length heterosis in maize.


Subject(s)
Hybrid Vigor , Plant Breeding , Zea mays/growth & development , Zea mays/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Hybridization, Genetic , Inbreeding , Real-Time Polymerase Chain Reaction , Transcriptome
17.
Small ; 17(31): e2102178, 2021 08.
Article in English | MEDLINE | ID: mdl-34196493

ABSTRACT

Enzyme-mimicking nanomaterials for antioxidative therapy is a promising star to treat more than 200 diseases or control their progressions through scavenging excessive reactive oxygen species (ROS), such as O2•- and H2 O2 . However, they can inversely produce stronger ROS (e.g., •OH) under many disease conditions (e.g., low pH for myocardial ischemia). Herein, a biocompatible -Cu-O-Zn- bimetallic covalent doped carbon dots (CuZn-CDs) processing both catalase (CAT) and superoxide dismutase activities are reported, mainly because of their abundant electrons and the excellent electron transfer abilities. In addition, Cu dopant helps to balance the positive charge at Zn dopant resulting from low pH, enabling CuZn-CDs to still process CAT ability rather than peroxidase ability. Benefiting from it, CuZn-CDs exhibit sufficient in vitro ROS scavenging ability and cardiomyocyte protective effect against ROS-induced damage. In vivo results further demonstrate that CuZn-CDs can protect the heart from ischemia-reperfusion injury. In addition to antioxidative therapy, the rapid renal clearance and low toxicity properties of CuZn-CDs in animal model reveal high biocompatibility which will facilitate clinical use.


Subject(s)
Antioxidants , Carbon , Animals , Catalase , Electrons , Superoxide Dismutase , Zinc
18.
Angew Chem Int Ed Engl ; 60(16): 8889-8895, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33543528

ABSTRACT

H2 O2 as a well-known efficient oxidant is widely used in the chemical industry mainly because of its homolytic cleavage into . OH (stronger oxidant), but this reaction always competes with O2 generation resulting in H2 O2 waste. Here, we fabricate heterogeneous Fenton-type Fe-based catalysts containing Fe-Nx sites and Fe/Fe3 C nanoparticles as a model to study this competition. Fe-Nx in the low spin state provides the active site for . OH generation. Fe/Fe3 C, in particular Fe3 C, promotes Fe-Nx sites for the homolytic cleavages of H2 O2 into . OH, but Fe/Fe3 C nanoparticles (Fe0 as the main component) with more electrons are prone to the undesired O2 generation. With a catalyst benefiting from finely tuned active sites, 18 % conversion rate for the selective oxidation of methane was achieved with about 96 % selectivity for liquid oxygenates (formic acid selectivity over 90 %). Importantly, O2 generation was suppressed 68 %. This work provides guidance for the efficient utilization of H2 O2 in the chemical industry.

19.
Small ; 16(51): e2004631, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33251705

ABSTRACT

Lithium-sulfur (Li-S) batteries are facing a significant barrier due to the diffusion of intermediate redox species. Although some S doped covalent framework cathodes have been reported with outstanding reversibility, the low content of sulfur (less than 30%) limits the practical applications. To overcome the issue, the sulfur and nitrogen co-doped covalent compounds (S-NC) as a host-type cathode have been developed through the radical transfer process during thermal cracking amino groups on the precursor, and then plentiful positively charged sulfur radicals can be controllably introduced. The experimental characterization and DFT theoretical calculation certificate that the sulfur radicals in S-NC/S can expedite redox reactions of intermediate polysulfides to impede their dissolution. Moreover, the energy barriers during ions transfer also obviously decreased after introducing S radicals, which lead to improved rate performance.

20.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327508

ABSTRACT

MicroRNAs are important regulators in plant developmental processes and stress responses. In this study, we generated a series of maize STTM166 transgenic plants. Knock-down of miR166 resulted in various morphological changes, including rolled leaves, enhanced abiotic stress resistance, inferior yield-related traits, vascular pattern and epidermis structures, tassel architecture, as well as abscisic acid (ABA) level elevation and indole acetic acid (IAA) level reduction in maize. To profile miR166 regulated genes, we performed RNA-seq and qRT-PCR analysis. A total of 178 differentially expressed genes (DEGs) were identified, including 118 up-regulated and 60 down-regulated genes. These DEGs were strongly enriched in cell and intercellular components, cell membrane system components, oxidoreductase activity, single organism metabolic process, carbohydrate metabolic process, and oxidation reduction process. These results indicated that miR166 plays important roles in auxin and ABA interaction in monocots, yet the specific mechanism may differ from dicots. The enhanced abiotic stress resistance is partly caused via rolling leaves, high ABA content, modulated vascular structure, and the potential changes of cell membrane structure. The inferior yield-related traits and late flowering are partly controlled by the decreased IAA content, the interplay of miR166 with other miRNAs and AGOs. Taken together, the present study uncovered novel functions of miR166 in maize, and provide insights on applying short tandem target mimics (STTM) technology in plant breeding.


Subject(s)
MicroRNAs/physiology , Zea mays/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , MicroRNAs/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Stress, Physiological/physiology , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL