ABSTRACT
Following long-term hypertension, mechanical stretching and neuroendocrine stimulation, cause multiple heterogeneous cells of the heart to interact, and result in myocardial remodeling with myocardial hypertrophy and fibrosis. The immune system, specifically macrophages, plays a vital role in this process. Macrophages are heterogeneous and plastic. Regulated by factors such as microenvironment and cytokines, polarization can be divided into two main forms: M1/M2, with different polarizations playing different roles in left ventricular structural remodeling associated with hypertension. However, descriptions of macrophage phenotypes in hypertension-induced myocardial hypertrophy models are not completely consistent. This article summarizes the phenotypes of macrophages in several models, aiming to assist researchers in studying macrophage phenotypes in hypertension-induced left ventricular structural remodeling models.
ABSTRACT
Background: The Jiawei Kongsheng Zhenzhong pill (JKZP), a Chinese herbal prescription comprised of eight Chinese crude drugs, has been historically employed to treat neurological and psychological disorders. Nevertheless, the ambiguous material basis severely hindered its progress and application. Purpose: The current study aimed to establish a rapid analytical method for identifying the chemical components of the JKZP aqueous extract and the components absorbed into the rat serum to investigate the quality markers (Q-markers) responsible for the neuroprotective effects of JKZP. Methods: The qualitative detection of the chemical components, prototype components, and metabolites of the aqueous extracts of JKZP, as well as the serum samples of rats that were administered the drug, was performed using the ultra-performance liquid chromatography- quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology. This analysis combined information from literature reports and database comparisons. Moreover, the study was conducted to anticipate the potential Q-markers for the neuroprotective effects of JKZP based on the "five principles" of Q-marker determination. Results: A total of 67 compounds and 111 serum components (comprising 33 prototypes and 78 metabolites) were detected and identified. Combining the principles of quality transmission and traceability, compound compatibility environment, component specificity, effectiveness, and measurability, the study predicted that five key compounds, namely, senkyunolide H, danshensu, echinacoside, loganin, and 3,6'-disinapoyl sucrose, may serve as potential pharmacological bases for the neuroprotective effects of JKZP. Conclusion: To summarize, the UPLC-Q-TOF-MS/MS technique can be employed to rapidly and accurately identify compounds in JKZP. Five active compounds have been predicted to be the Q-markers for the neuroprotective effects of JKZP. This discovery serves as a reference for improving quality, advancing further research and development, and utilizing Chinese herbal prescriptions.
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Shenling Baizhu San (SLBZS) is a formula of traditional Chinese medicine (TCM) that enhances the functions of the qi, spleen, and lung. According to the theory of TCM, chronic obstructive pulmonary disease (COPD) is often caused by lung qi deficiency, and SLBZS is often used in the treatment of COPD and has achieved remarkable results. However, the active components of SLBZS absorbed in serum and the underlying mechanism of SLBZS in treating COPD remain unclear and require further studies. AIM OF THE STUDY: The objective of this study is to investigate the active components of SLBZS in rat serum, as well as the crucial targets and signaling pathways involved in the therapeutic effects of SLBZS for COPD. MATERIALS AND METHODS: First, the absorption components and metabolites of SLBZS in rat serum were identified using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Second, potential targets of SLBZS for the treatment of COPD were acquired from publicly accessible online sources. Cytoscape (v3.7.0) software was used to construct a component-target-pathway network and a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential targets was performed using the Metascape database. The binding status of the active components in SLBZS to the potential targets was assessed with molecular docking technology. Finally, a cell model of COPD was successfully developed for experimental validation In vitro. RESULTS: A total of 108 active components were identified, including 30 prototype components and 78 metabolites. A total of 292 potential targets for the treatment of COPD were identified, including TNF, IL-6, TLR9, RELA, and others. The KEGG pathway included inflammatory mediator regulation of TRP channels, necroptosis, and the NF-κB signaling pathway, among others. The In vitro experiments showed that SLBZS-containing serum had the ability to decrease the levels of inflammatory factors and cell death. Additionally, it was observed that SLBZS-containing serum could control the expression levels of TLR9, MyD88, TRAF6, NF-κB, and IκBα at the mRNA and protein levels. These findings suggested that SLBZS-containing serum was likely to be involved in the regulation of the TLR9/NF-κB pathway. CONCLUSIONS: The mechanism of action of SLBZS on COPD was preliminarily elucidated using UPLC-Q-TOF-MS/MS, network pharmacology, and In vitro experiments. The primary active components and potential targets of SLBZS were identified, providing a scientific foundation for further research.
Subject(s)
Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Animals , Rats , Tandem Mass Spectrometry , Network Pharmacology , NF-kappa B , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Toll-Like Receptor 9 , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapyABSTRACT
Depression has become one of the most common public health issues around the world, and the incidence has been increasing in recent years. A large amount of clinical investigations have proven that the treatment of depression is difficult. The prognosis is poor, and the fatality rate is high. At present, western medicine is the preferred treatment for depression, but it often causes adverse clinical reactions such as dry mouth, blurred vision, and memory loss, etc. The herbal compound Xiaoyao Powder is a traditional medicine for soothing the liver and relieving depression, strengthening the spleen, and nourishing the blood. It can reduce adverse reactions. It is effective in treating depression. In this study, we elucidate the function of Xiaoyao Powder in anti-depression from the perspective of clinical application and pharmacological mechanisms such as regulating epigenetic and chemical quality markers to provide empirical and experimental theoretical results that contribute to developing future depression therapy with Xiaoyao Powder.
ABSTRACT
We aimed to identify the molecular biomarkers of MDD disease progression to uncover potential mechanisms of major depressive disorder (MDD). In this study, three microarray data sets, GSE44593, GSE12654, and GSE54563, were cited from the Gene Expression Omnibus database for performance evaluation. To perform molecular functional enrichment analyses, differentially expressed genes (DEGs) were identified, and a protein-protein interaction network was configured using the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape. To assess multi-purpose functions and pathways, such as signal transduction, plasma membrane, protein binding, and cancer pathways, a total of 220 DEGs, including 143 upregulated and 77 downregulated genes, were selected. Additionally, six central genes were observed, including electron transport system variant transcription factor 6, FMS-related receptor tyrosine kinase 3, carnosine synthetase 1, solute carrier family 22 member 13, prostaglandin endoperoxide synthetase 2, and protein serine kinase H1, which had a significant impact on cell proliferation, extracellular exosome, protein binding, and hypoxia-inducible factor 1 signaling pathway. This study enhances our understanding of the molecular mechanism of the occurrence and progression of MDD and provides candidate targets for its diagnosis and treatment.
Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/genetics , Depression , Gene Expression Regulation, Neoplastic , Biomarkers/metabolism , Protein Interaction Maps/genetics , Computational Biology , Biomarkers, Tumor/genetics , Gene Expression ProfilingABSTRACT
OBJECTIVE: This study aims at investigating the potential targets and functional mechanisms of Scutellariae Radix-Coptidis Rhizoma (QLYD) against atherosclerosis (AS) through network pharmacology, molecular docking, bioinformatic analysis and experimental validation. METHODS: The compositions of QLYD were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, where the main active components of QLYD and corresponding targets were identified. The potential therapeutic targets of AS were excavated using the OMIM database, DrugBank database, DisGeNET database, CTD database and GEO datasets. The protein-protein interaction (PPI) network of common targets was constructed and visualized by Cytoscape 3.7.2 software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to analyze the function of core targets in the PPI network. Molecular docking was carried out using AutoDockTools, AutoDock Vina, and PyMOL software to verify the correlation between the main components of QLYD and the core targets. Mouse AS model was established and the results of network pharmacology were verified by in vivo experiments. RESULTS: Totally 49 active components and 225 corresponding targets of QLYD were obtained, where 68 common targets were identified by intersecting with AS-related targets. Five hub genes including IL6, VEGFA, AKT1, TNF, and IL1B were screened from the PPI network. GO functional analysis reported that these targets had associations mainly with cellular response to oxidative stress, regulation of inflammatory response, epithelial cell apoptotic process, and blood coagulation. KEGG pathway analysis demonstrated that these targets were correlated to AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, and NF-kappa B signaling pathway. Results of molecular docking indicated good binding affinity of QLYD to FOS, AKT1, and TNF. Animal experiments showed that QLYD could inhibit inflammation, improve blood lipid levels and reduce plaque area in AS mice to prevent and treat AS. CONCLUSION: QLYD may exert anti-inflammatory and anti-oxidative stress effects through multi-component, multi-target and multi-pathway to treat AS.
Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Network Pharmacology , Scutellaria baicalensis , Molecular Docking Simulation , Disease Models, Animal , Medicine, Chinese TraditionalABSTRACT
Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.
ABSTRACT
The title complex, [Cu(2)(C(13)H(11)F(2)N(6)O)(2)](ClO(4))(2), which was hydro-thermally synthesized, contains a binuclear copper cluster (2 symmetry) with a Cu(2)O(2) rhombus [Cu-O = 1.927â (2)â Å] formed by donation of two O atoms from two chelate rings. The tridentate function of each ligand is completed by two N atoms coordinated to the two Cu(II) atoms [Cu-N = 1.933â (2)â Å]. The separation distance of two Cu(II) atoms in a cluster is 2.988â (1)â Å. The dihedral angle between the six-membered chelate rings is 2.13â (9)°. The perchlorate counter-anion is disordered over two sites in a 0.58â (10):0.42â (10) ratio.
ABSTRACT
Six solid complexes(TbL3 x 2H2O, TbL2 (phen) x H2O, TbL2 (TPPO), EuL3 x 2H2O, EuL2 (phen) x 2H2O and EuL2 (TPPO) x 2H2O) have been synthesized based on the pyrazole ligand(HL)(phen = 1,10-phenanthroline, TPPO = Tri-phenylphosphine oxide, HL=1-(5-(2-hydroxyphenyl)-3-methyl-4,5-dihydropyrazol-1-yl) ethanone). These complexes were characterized by elemental analysis, IR spectra, and fluorescence spectra. The IR spectra indicated that all complexes exhibited the characteristic peaks of asymmetric stretching vibration v (C=O) and symmetric stretching vibration v (C=N) peaks. The C=O stretching band at 1,644 cm(-1) of HL molecule shifted to lower band in the complexes. The O-H band at 3,072 of the HL ligand is also shifted to lower band. All these shifts indicated that carbonyl group, O-H and C=N take part in coordinating with the rare-earth ion in the form of bridging tridentate. The excitation and emission spectra of the six complexes were determined at room temperature and the results show that EuL2 (Phen) x 2H2O and TbL2 (Phen) X 2H2O display the strongest relative fluorescence intensity with the excited bands at 310 and 320 nm, respectively. Meanwhile, the emission intensities of Eu3+ and Tb3+ complexes were greatly sensitized by phen.